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ABSTRACT
Procedural generation of rooms aims to create virtual environments
that mimic common patterns found in real-world indoor locations,
like offices or bedrooms. Graph-based models (e.g. factor graphs
or Bayesian networks) have often been used to represent typical
location’s objects and their occurrence likelihood (nodes), as well
as their inter-relationships (edges). Previous methods have strug-
gled to represent object semantics in their graph nodes; specifically,
they fail to fully and effectively support notions as abstractions (e.g.
generic seat instead of chair) and replication (e.g. cups instead of
cup). We propose a generalized representation and use for object
semantics that overcomes the above limitations of graph-based
models in the procedural generation of rooms. This node represen-
tation handles semantics as attributes, and clearly distinguishes the
contribution of the attributes on the node from the potential effects
of the node on the whole graph. We illustrate the additional expres-
sive power of the resulting graph-based model for room generation,
and show that it subsumes previous models as particular cases.

CCS CONCEPTS
•Computingmethodologies→ Semantic networks; •Applied
computing → Computer games.

KEYWORDS
Procedural Content Generation, Data Representation, 3D Content
Generation

ACM Reference Format:
J. Timothy Balint and Rafael Bidarra. 2019. A Generalized Semantic Rep-
resentation for Procedural Generation of Rooms. In The Fourteenth Inter-
national Conference on the Foundations of Digital Games (FDG ’19), August
26–30, 2019, San Luis Obispo, CA, USA. ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/3337722.3341848

1 INTRODUCTION
A Procedurally Generated Room (PGR) is a location generated from
a representation of the objects and their relationships commonly
found in that location. PGRs are also sometimes called synthesized
indoor scenes. Creating PGRs requires Procedural Content Genera-
tion (PCG) methods that sensibly distribute the appropriate content
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over the available space. Each PGR instance should provide the
impression of the distribution while being dissimilar in both the
total of objects used and the way in which they are laid out.

Procedural room generation is concerned not only with where
objects should be placed in a setting, but alsowith howmany objects,
as well as with the visual and non-visual ways in which the objects
interact. We call this distribution of objects that describe a room
and their relationships the motif of the location. For example, the
motif of an office would contain one or more desks, with one or
more chairs related in proximity and orientation to that desk.

There are two main methods used to generate rooms: gram-
mars [16, 28] and sampling from a graph-based data structure [3,
4, 22]. In essence, sampling from a graph-based data structure se-
lects a subset of the graph and generates a room from the selected
content and relationships. The data structures used in sampling
are learned from examples of that location, where each node in the
model is a learned probability for a given object (and relationship,
in the case of factor graphs) to exist. Links in these models denote a
causal relation between them. Factor graphs, which further define
relationship nodes in addition to content nodes, can be thought of
as having semantic links, where additional meaning is given to the
relationships between objects. The content and structure of those
graphical models therefore embody the semantics of a location.

Graph structures for rooms are also useful in that they allow
similarity between rooms to be defined [5]. However, semantics that
are only probabilistically related to the distribution of objects (such
as the frequency of multiple instances of the same object being
located in the same room or different possible styles) are inter-
nodal properties and not easily represented in this configuration.
Thus, while graphs are a powerful representation of motif, there
are several semantic properties that they cannot encapsulate.

Two specific properties that we focus on in this work are ab-
stractions and replications. Abstractions allow for the selection of
one object to generate from a possible group. Replication allows for
the generation of multiple objects given a single selection. These
semantics can also be used together to create homogeneous and
heterogeneous objects, therefore expanding the variety of possible
generation.

While semantics can expand a room generator’s ability, both the
data structure and the generator force the motif to be simpler. This
means object properties like replication and abstractions can be
lost in the motif, as well as never sampled by the generator. The
distribution of generated objects and their configuration is known
as the visible distribution of a motif. When the visible distribution
is unable to generate the entire distribution of objects found in the
motif, the overall variability of PGRs decreases. As a result, the
expressive power of a room generation system is hampered by both
the representation it uses and its generation system.

https://doi.org/10.1145/3337722.3341848
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To better capture objects and their associated semantics, we pro-
pose a motif representation based on the novel node representation
of a Content Chunk. Using a content chunk, semantics for an object
are now contained within a single node, instead of being distributed
over the graph. When paired with current generation models, the
motifs using content chunks are better equipped to express objects’
semantics, and therefore more fully represent the motif.

2 RELATEDWORK
Data-driven PGRs attempt to populate and layout objects based on a
learned pattern. Of the large body of work available, many [6, 9, 19]
use a probabilistic graph representation (such as a Bayesian net-
work or factor graph) in order to store and generate rooms. Rooms
are generated as subsets of the motif, choosing objects either by
selecting sections of the graph or through graph search. One way
to increase the variability of generated rooms is to incorporate se-
mantics into the objects. Work such as Savva et al. [21] determines
semantics on objects such as the material of an object and type cat-
egorizations. These semantics are used for scene synthesis queries
like those used in SceneSeer [2]. For these approaches, semantics is
used as a selection mechanism instead of a motif, requiring more
human intervention. While improvements such as that by Ma et
al. [18] have sub-motifs, the semantics from Savva et al. [21] is not
used in the sub-motif learning, signifying that the integration of
semantics in motifs is still an open problem.

Other semantics, such as abstraction and replication of objects
in a motif, has been explicitly captured as part of the graph data-
structure. The method of encoding these semantics generally falls
into two categories: using a special connection between independent
nodes in the graph and enumerating all possible semantic connections.
A generic example of these two methods can be found in Figure 1.

Special connections for replication treat each content as inde-
pendent, but provide the ability for them to be related. An abstract
representation can be seen in Figure 1a. Work such as Fisher et
al. [4], Kermani et al. [11], and Liang et al. [14] treat replication of
objects as independent objects, in a process known as Binarization.
Each of these encoding methods also contain one or more special
graph connections to state that these objects are related. However,
creating a graph in this fashion means that each object may (and of-
tentimes does) have differing links between the same object, which
may lead to inaccuracies such as missing relationships between
them. Therefore, using this method provides a more realistic repre-
sentation for what objects exist in the world, but is incomplete in
how they are configured or controlled.

Counter to using a special connection, some work enumerates
each possible combination of a set of objects as a given singular
node, and describes how the objects in a given combination relate
to one another. The example in Figure 1b enumerate four differ-
ent combination of glasses and mugs on a table. Works such as
Scenesuggest [20] and Sceneseer [2] enumerate items in a set. In
these works, the probability of an item having multiple of that same
object in a given environment becomes its own, disjoint probability.
While other work such as Ma et al. [17] does not specifically use
an object-relation motif formulation, they do learn a probability
of occurrence for objects given the cooccurance of objects already
placed in the environment. This is analogous to having a single

(a)

(b)

Figure 1: Two competing graph based representations to
place one to two cups and zero to one mugs on a table, based
on the likelihood of probability P(o). (a) Special connection
graph methods would have a probability for each individ-
ual object, which would be resolved individually. The spe-
cial connections are shown as dotted lines. (b) Enumerating
methodswould have a probability for each individual group-
ing of objects. In this figure, there is a box around the enu-
merated objects.

occurs relationship between possible objects in the environment.
Their later work [18] adapts a sub-scene model, incorporating het-
erogeneous sets with specified relationships as sub-motifs with a
given probability. The sub-motifs in Ma et al., as well as the singular
objects in other work, allow precise control of the configuration
of content inside that node, which is an improvement over the
control mechanisms of the special connection methods. However,
the enumeration of possible abstractions becomes cumbersome as
the number of potential ways to replicate and abstract grows. This
leads to unrealistic representations of how the nodes interact, as
the number of nodes tend to overwhelm generation systems to only
generate a subset of the motif.

The tricks and techniques used for graph-based representations
of rooms either rely on having independent representations for
all objects or enumerating all possible combinations of a set of
objects. Each of these methods captures and assumes different
meaning in the relationship between objects in a location. In order
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to capture both replications and abstractions (as well as control for
possible semantics not yet used) in the same graph, a hybrid graph
representation is needed.

3 GENERALIZED REPRESENTATION OF
GRAPH NODES

In Section 2, we described the two most common ways of repre-
senting semantics such as abstractions and replications of objects
in graph-based motifs. However, previous graph-based models do
not contain a generalized way of representing semantics in a node.
Therefore, we define a new representation of objects in motifs,
called a content chunk. The content chunk has self-contained se-
mantics (such as the minimum and maximum replication of an
object allowed in the motif), each with an associated probability
that the semantic is a part of the content’s context. The instantia-
tion of object semantics during generation is then performed on
the content chunk (instead of the whole graph). This is guided by
a heuristic function called the Internal Probability Function (IPF).
In addition to the IPF, we include an External Probability Function
(EPF) to control when the node is selected from the motif during
generation. An example of a content chunk can be seen in Figure 2.

Figure 2: A motif using content chunks for the example
graph from Figure 1. The content chunk treats each individ-
ual object as an attribute, whose likelihood of representing
that node is the IPF. Much like P(o#) in Figure 1, we have a
probability of the node being generated, denoted as the EPF.

In addition to object semantics, a content chunk can have inter-
relationships between objects generated through replication of the
chunk. An inter-relationship is a relationship that applies to all ob-
jects generated by the content chunk (i.e. a loop) when the relation-
ship is selected by the generator. In Figure 2, the inter-relationship
on the content chunk of glasses andmugwould create a relationship
between all generated mugs and glasses. As motifs are represented
as graphs, a content chunk can be thought of as a fully connected
section of the graph.

Semantics in a content chunk are represented as a set of tun-
able parameters called attributes; examples can be the different

abstractions of objects or the range of objects that can be reason-
ably replicated in a given room. A single attribute is a real-valued
set representing one semantic in a content chunk, comparable to
the use of units for semantic entities in other work [12]. As at-
tributes can be inter-related, it is more important during generation
to consider the full set of attributes for a single content chunk.

The need for an attribute set becomes apparent when examining
content chunks that contain both abstraction and replication, such
as the one seen in Figure 2. In the figure, this content chunk can
generate mugs or cups. There are two possibilities that may occur
in this scenario: either we have a homogeneous set (consisting only
of cups) or heterogeneous sets (a combination of mugs and cups). In
a homogeneous set, only one abstraction may be valued anything
other than zero, denoting a set for that abstraction. Furthermore,
each abstraction can have a different range. In this example, the
system has learned that more cups may exist in the generated
room than a set of mugs. A heterogeneous set would allow both
abstractions to exist in a scene, with the same relationships between
all of them.

3.1 Probability Functions
As content chunks contain semantics in the node, each node be-
comes much more expressive than in other graph-based motifs.
However, during generation, the variability of the semantics sets
must be instantiated. To do so, content chunks have two functions,
one that controls the likelihood of the instantiated attribute set
representing the node and one that controls the interaction of the
node in the graph.

The Internal Probability Function (IPF) is a heuristic function
used to describe the overall probability of a given combination of
semantics during generation. It allows the semantics in the content
chunk to be sampled, so that different configurations may exist.
For example, disjoint attributes (such as only having homogeneous
objects) will generate an IPF of zero if the semantics of a content
chunk create a heterogeneous set. Having more complex functions
represent each attribute, as is done in [15], can then become a cost
function, which can be sampled to find well defined semantic sets.
Finally, it should be noted that a content chunk that contains only
a single object will have a delta Dirac function centered at 1 as an
IPF.

Graph structures that encode replication, such as the Bayesian
Network structure of Fisher et al. [4], have a starting probability to
begin adding in a set. Furthermore, many other motif definitions [11,
17, 20] contain a probability for that node appearing in a scene. This
is different than (albeit can be related to) the likelihood of a given
attribute set. Therefore, we also formulate a content chunk with
an External Probability Function which controls how the content
chunk exists within the motif.

The External Probability Function (EPF) describes the likelihood
that the instantiated content chunk should be selected during gen-
eration. The EPF may rely on the IPF and encoded set of attributes
to determine its probability. Therefore, the EPF can rely on the re-
sults of sampling the semantic set, and should be determined after
the IPF is determined. Furthermore, much like IPFs for singular
semantics, when a content chunk only contains a single attribute
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and single value, the EPF of that content chunk should be a single
value.

The IPF and EPF are, thus, an effective solution for handling
multi-object relationships when using any graph-based model.

4 EXAMINATION
4.1 Reduction to Content Chunks
Content chunks subsume other graph-based models of motifs, al-
lowing semantics of objects such as abstractions and replications
to be encapsulated within each object node in the graph. By sub-
suming several other graph-based representations, content chunks
should be able to overcome the individual limitations that each
other data structure suffers from. We refer to this subsumption as a
reduction from one data structure to another.

(a)

(b)

(c)

Figure 3: A high level example of the sub-graphs created by
our two test algorithms. From (a) the motif, (b) Kermani et
al. select a subset of the relationships. Any object connected
to a selected relationship is also selected. In contrast, (c) Sce-
neSeer performs a search from a starting selected node (in
red) to an end node (in green). The objects and relationships
not selected are shown in gray.

When converting from one data structure that was developed
in combinationwith a generation method, both the structure and
the effects of the generator must be taken into account. While
the underlying distribution is contained in their motif, the visible
distribution, which is the distribution that is expressed through
generation, is based on the generator. One crucial aspect of this
work is that the visible distribution may not match the underlying
distribution that is captured in the motif. As the motif represents the
distribution of the room, deviations caused by generation should
not exist (or those deviations should be minimized). Therefore, we

will describe when the reduction to content chunks allows the motif
to better align to the visible distribution.

4.1.1 Special Connection Reduction. The first (and simplest) reduc-
tion that we perform is with Kermani et al.’s factor graphs [11].
The factor graphs are a kind of special connection graph; therefore
each content chunk in the factor graph contains one object with a
probability of existence, and relationships are represented as a joint
probability between objects. Kermani et al. has one relationship,
the symmetry relationship1, that in fact represents object semantics
(duplication of objects). This relationship requires three objects, a
set of two identical objects and a third object which acts as the line
of symmetry. It is with this example that we reduce their factor
graphs into factor graphs with content chunks.

Rooms are generated by Kermani et al. by selecting relationships
to create a subgraph from the motif (seen in Figure 3b), using a
Monte Carlo Markov Chain (MCMC) method. Each node and link
contribute to the overall likelihood of those objects and that con-
figuration existing, either as the probability or compliment of that
probability. Creation is controlled by specifying the desired number
of objects, meaning that the size of the used graph has a direct effect
on the variation of the generated rooms, and contributes to the dif-
ference between the motif and visible distribution. In the following
reduction, we focus on representing the underlying distribution
instead of the visible one.

The two set objects that can be compressed into a content chunk
have independent probabilities of existence. However, for a set of
objects, there will be one object that has a larger probability than
the others, with an equivalent or decreasing probability of existence
for each additional object in the set. To generate the IPF, we first
notice that the probabilities for duplicated items can be sorted into
decreasing order. Therefore, we sort the probabilities for each item,
and then compute a scan of the product for all probabilities. That
is, for the ith item in the set, the probability for that to exist is the
multiplication of all the previous probabilities in the set. The IPF
is then the normalized value for all calculated probabilities of the
same object 1 . . .n. Similarly, the EPF, which describes how likely
the set is to be in the graph, is the non-normalized scan probability
for each set calculation.

Content chunks combine all set items from the factor graph into
a single node. As the sampling function evaluates the probability of
the graph for each iteration, we can calculate the IPF and EPF for
each iteration. This causes the reduced graphs to produce more sets,
as creating a set is not solely reliant on those special connections
and does not compete with other connections during generation.

4.1.2 Enumeration Reduction. The second reduction that we per-
form is to reduce a graph that stores enumerated object sets to a
graph using content chunks. For this, we choose the method of
SceneSeer [2], which is also found in SceneSuggest [20]. These
methods store their motifs as a table of both existence and joint
probabilities. One component of this set of work is that they use
a one level taxonomy, which they employ when the learned data
has a low probability. This means that the captured information
ignores any specificity in the abstraction, creating heterogeneous

1As shown in their additional materials, located at
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.12976.
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sets. Furthermore, they learn a separate probability of existence for
each count of a set of items, making their methods enumeration
methods. SceneSeer uses a graph-growing generation method (seen
in Figure 3c), which selects two objects from the motif and grows
the scene through a search algorithm between the two objects. Ad-
ditional objects not directly in the path between the two selected
objects may also be included.

Much like the previous reduction, the IPF and EPF of this re-
duction relies on probability tables. Each count in a set has an
independent probability calculated for it. These probabilities are
used to create an IPF in the following manner: the internal proba-
bility of one or both objects existing is the normalized probability
between each calculated set of objects. As abstraction information
is lost during the learning stage, the IPF calculates the likelihood
from the table based on the total number of objects, and not the
number of objects in each abstraction. Unlike the previous reduc-
tion, each relationship in this graph is a calculated static prior. So
the EPF can be represented as the singular value between nodes,
similar to the original.

4.2 Application to Room Generation
As stated in Section 2, either type of graph-based model (both spe-
cial connection and enumeration) captures information that the
other is unable to. As content chunks subsume both models, they
can be used to transfer the learned features from one method to
another. For room generation purposes, this means that heteroge-
neous sets learned for SceneSeer can be used in conjunction with
the Monte Carlo Markov Chain method of Kermani et al.

We begin by implementing the learningmethods of both Kermani
et al. and SceneSeer. After creating the motifs of a bedroom from
the SUNCG data-set [1, 23], we generate several examples of each
using their generation method, and select the sub-motif that has
the median number of objects and relationships between them. An
example of each result can be seen in Figure 4. Next, we modify
each motif to use content chunks using the reductions described
in Section 4.1. We then generate using these modified motifs. The
results can be seen in Figure 5.

When nodes are converted into content chunks, the learned code
for Kermani et al. generates, on average, the same number of con-
tent chunk objects and relationships as in their data structure. In
other words, the underlying behavior of the algorithm remains un-
changed. However, when considering the sets of generated objects
as separate objects, the total number of generated objects is greater
than when simply using factor graphs. With an internal probabil-
ity function to determine sets, the likelihood that a set is selected
greatly increases. This is due to the underlying set relationships
(symmetry) having a low probability of existence, especially when
compared to other, singular objects. As the generation algorithm
is optimized for the number of objects, as the possible number
of items in a motif grows, the likelihood of duplication decreases
when the optimum number of objects is less than the total variety
of objects. By extracting that semantic into a content chunk, it no
longer becomes a competing control that ignores portions of the
motif. Therefore, converting their representation allows their selec-
tion algorithm to focus on the underlying relationships between

(a)

(b)

Figure 4: Examples of generated bedrooms using the motif
and generation methods of (a) Kermani et al. and (b) Scene-
Seer.

objects, meaning the visible distribution more closely matches the
underlying distribution.

The selection method of SceneSeer, for two disjointed sets of
objects, can produce varying effects depending on the full distance
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Figure 5: Examples of generated bedrooms from content chunks reduced from themotifs of Kermani et al. and SceneSeer. Note
thatmore objects are generated using SceneSeer’s generationmethod (independently of themotifmethod). Furthermore,more
sets are stored in the motif method of SceneSeer than of Kermani et al..

between objects in the graph. The further the objects, the more
likely that many additional objects will be added to the scene. We
see this effect in both the generalized representation and the origi-
nal probability graph. However, due to the decrease in the number
of nodes considered when using content chunks, growing a room
on the graph has less overall nodes and paths to consider. In Fig-
ure 5d, having fewer paths and nodes means that objects are less
constrained (when compared to Figure 4b, keeping the set semantics
while being able to prune some of the search space.)

One interesting consequence of using content chunks is that
more combinations from the motif are expressed, such as the three
beds that appear in Figure 5d. While three double beds may seem
improbable for a room, their existence in the motif means that
there is a statistically significant (although low) chance that those
objects can exist in the location. When sets are not an attribute, the
global section of three beds is far less likely, as search stops once

one bed node is selected. This is due to the ordering of like nodes
in the motif, and therefore makes it much more difficult for those
algorithms to express rooms that are known to be possible (due to
their existence in the motif).

The reductions from nodes to content chunks have a similar
effect on the total size of the motif. For our two test data-sets, this
reduction effect is approximately 45% for Kermani et al.’s generated
motif and 50% for Saava’s. Therefore, both methods capture a lot of
replicated objects in the SUNCG data-set, which are not expressed
to the same extent in their generation methods.

5 DISCUSSION AND CONCLUSIONS
We introduced content chunks, a generalized node representation
for objects in graph-based representations of motifs. By using it,
procedural room generation can be broken up into what is learned
and what is generated, allowing for a more in-depth comparison
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between different methods. The compactness of motifs using con-
tent chunks has a positive effect on room generation. For example,
in our tests, this increased the likelihood of replicated objects.

Most graph-based PGR algorithms grow the graph sequentially,
testing the addition and configuration of single objects one at a
time, using a generate and test approach [25]. For the generation
of a room containing only a few objects, the placement chunk
does not provide much information. Furthermore, slight changes
to traditional methods, such as group based MCMC [15], show
that adding and configuring a single object is neither efficient nor
sufficient. Instead, using content chunks allows for group-aware
addition by accounting for object sets.

Due to the generality afforded by content chunks, it is not im-
mediately apparent how the described structure can be learned
from real data-sets. Based on the reductions presented in Section 4,
content chunks can subsume many different representations. A
cursory examination of the generated motifs shows that these rep-
resentations capture different information, even though they mine
the same location data. One possible approach, rather than design-
ing one algorithm to learn content chunks, is to discover how to
aggregate the information gleamed from other approaches. Doing
so would also allow us to more thoroughly compare the node repre-
sentation on room generation, as the data and generation method
used can be the same for all comparison methods and the genera-
tion method can be the same as well. Furthermore, to the best of
our knowledge, there are so far no quantitative metrics to precisely
compare the expressive power of motif and generation methods.
Developing such metrics is an important advancement to the field,
but is outside the scope of this work.

Beyond graph-based representations, deep neural network meth-
ods have recently been used to procedurally generate rooms [13, 27].
These methods provide both a generation pipeline as well as new
representation schemes. In future work, it would be interesting
to assess how the information conveyed by these new methods
compares to that of the generalization proposed here to graph-
based methods. Furthermore, it would be also interesting to explore
possible uses of the functions that are learned by these deep neu-
ral networks for improving the interior and exterior probability
functions of content chunks. Finally, graph-based models are being
used to represent other aspects of a game, such as mechanics and
rule-sets [7, 8], or richer game level semantics [10, 24, 26]. These
are all semantic representations, and therefore it would be worth
exploring whether content chunks could be extended with even
richer semantics.
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