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ABSTRACT
Players begin games at different skill levels and develop their skill 
at  different  rates  so  that  even  the  best-designed  games  are 
uninterestingly easy for some players and frustratingly difficult for 
others. A proposed answer to this challenge is Dynamic Difficulty 
Adjustment  (DDA), a general  category of approaches that  alter 
games during play, in response to player performance. However,  
nearly  all  these  techniques  are  focused  on  basic  parameter 
tweaking,  while  the  difficulty  of  many games  is  connected  to 
aspects that are more challenging to adjust dynamically, such as 
level design. Further, most DDA techniques are based on designer 
intuition, which may not reflect actual play patterns. Responding 
to  these  challenges,  we  present  Polymorph,  which  employs 
techniques  from  level  generation  and  machine  learning  to 
understand  game  component  difficulty  and  player  skill, 
dynamically constructing a 2D platformer game with continually-
appropriate  challenge.  We  believe  this  will  create  a  play 
experience  that  is  unique  because  the  changes  are  both 
personalized and structural, while also providing an example of a 
promising new research and development approach.  

Categories and Subject Descriptors
K.8.0 [Personal Computing]: General – Games.  I.2.6 [Artificial 
Intelligence]: Learning.

General Terms
Design, Human Factors.

Keywords
Games,  level  design,  dynamic  difficulty  adjustment,  procedural 
content generation.

1. INTRODUCTION
The classic 2D side-scrolling platformer is a genre of games that 
focuses  on  jumping  dexterity  and  precise  timing  to  get  past 
obstacles in fairly linear levels; for example, Super Mario Bros 
[8]. The game levels are designed to be difficult and unforgiving, 
so  the  player  is  only able  to  complete  a  level  after  playing  it 
partway  through  multiple  times  to  learn  the  exact  necessary 
pattern of actions. This genre of game has been very popular, but  

it cannot be said to cater to every player's experience and abilities.  
This  is  one  example  of  the  types  of  problems  that  can  be 
addressed with Dynamic Difficulty Adjustment (DDA).
This paper describes the vision and implementation of Polymorph. 
The goal of Polymorph is to automatically generate 2D platformer 
levels during play as a means of dynamic difficulty adjustment. 
Specifically, rather than being authored by hand, game levels will  
be procedurally generated as the player moves through the level, 
one chunk at a time as needed. The generation of these chunks 
will be customized to match the player's performance, so that each 
player  will  be presented with  a level that  provides a challenge 
appropriate to their skill.  This is not to say that the player will 
never die in a tough section or breeze through an easy section, but  
the  game  will  correct  for  this  in  the  next  section,  hopefully 
avoiding  difficulty-related  player  frustration  and  boredom  and 
providing an example of a promising new approach to DDA.
We tackle  the DDA problem by creating a statistical  model  of 
difficulty  in  2D  platformer  levels  along  with  a  model  of  the 
player's  current  skill  level.  These  models  are  gleaned  with 
machine  learning  techniques  from play traces  collected  with  a 
game-like tool. The models are used to select the appropriate level  
segment for  a player's  current  performance.  The level  segments 
are generated automatically using a variation on the work of [14],  
which is described in more detail in section 2.2.
This paper shows how a game can be designed to accommodate 
the  skill  and  experience  of  every  individual  player  by 
incorporating  machine  learning  techniques  and  dynamic  level 
generation. This is an advance on prior work in dynamic difficulty 
adjustment,  which  has for  the most part  avoided adaptive level 
design,  and  in  procedural  level  generation,  which  has  mainly 
focused on creating full levels for replayability.  Polymorph is a 
work in progress: a data collection tool, the level generator, the 
game engine, and a pilot study have been completed. 

2. RELATED WORK

2.1 Dynamic Difficulty Adjustment
Game designers nearly always strive to create games in which the 
difficulty of the obstacles presented to the player is appropriate for 
the  player's  skill  level.  As  a  player's  skill  improves  through 
practice,  a  well  designed  game  will  present  more  formidable 
difficulties  so  that  the  player  is  never  bored  by  overly  easy 
gameplay or frustrated by overly difficult gameplay [3] [6]. This 
in  itself  is  a  very challenging  design  task however,  and  game 
designers spend great effort making sure that their game is well 
balanced  so  that  challenges  will  be  appropriate  for  players' 
abilities. Even so, designers are usually not able to accommodate 

Permission to make digital or hard copies of all or part of this work for  
personal or classroom use is granted without  fee provided that  copies 
are not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise,  or  republish,  to  post  on  servers  or  to  redistribute  to  lists, 
requires prior specific permission and/or a fee.
PCGames 2010, June 18, Monterey, CA, USA
Copyright 2010 ACM 978-1-4503-0023-0/10/06... $10.00 



every player's  skill  level,  and frustrating mismatches between a 
player's skill and a game's difficulty are common [5] [12]. 

As  described  briefly  above,  Dynamic  Difficulty  Adjustment 
(DDA) is a term for techniques in which games automatically alter 
themselves in some way to better fit the skill levels of the players. 
This is common in the genre of racing games with the practice of 
“rubber  banding”,  wherein  players  in  last  place are  granted  an 
increased maximum speed [5]. DDA is rarely used in other game 
genres, but there are some notable exceptions.  One of the most 
complex examples  of  DDA in  a  commercial  game is  the  first-
person shooter SiN Episodes. It uses a statistical model of player 
performance  with  “advisor”  sub-systems  that  adjust  attributes 
such  as  the  number  of  concurrent  enemies,  the  damage  and 
accuracy  of  the  enemies'  weapons,  and  the  enemies'  tendency 
toward throwing grenades [7] [13].  Hunicke created the Hamlet 
system,  which  uses  sets  of  probabilities  to  determine  the 
appropriate time to intervene in a first-person shooter by giving 
the player  more ammo or a health  boost  [5].  What  these DDA 
strategies  all  have  in  common  is  that  the intervention  into  the 
game  is  primarily  through  a  numeric  attribute  adjustment.  In 
contrast, the dynamic changes made by Polymorph are structural 
rather than numeric in nature.

An alternative  method  of  intervention,  on  which  this  paper  is 
focused, is the modification of the level design. For example, Left 
4 Dead changes the location and frequency of spawn points for 
enemies and items based on player performance, which can have a 
significant  impact on player  experience but  is not  a substantial  
change in the structural design of the levels [2] [18]. Pedersen et  
al. created a version of Infinite Super Mario Bros from which they 
derived  a  statistical  model  of  player  challenge  and  frustration,  
among  other  emotional  states  [11].  Using  their  evolutionary 
algorithms,  this  model  could  be  used  to  generate  levels  for  a 
particular level of player challenge, which is the closest work (of 
which  we  are  aware)  to  the  approach  of  Polymorph  [10].  
However,  it  is  not  designed  to  be dynamic during play,  unlike 
Polymorph,  which  generates  sections  of  a  level  ahead  of  the 
player's movement, allowing a level to change in difficulty from 
start to finish in response to changes in the player's performance.

2.2 Procedural Level Generation
Procedural level generation has been used in games for decades,  
with popular RPGs such as Rogue and Diablo, as well as some 2D 
platformers such as Spelunky [1] [17] [19]. These games typically 
work by fitting together hand-authored level chunks into random 
combinations. Pedersen et al.'s variation on Infinite Super Mario 
Bros  also  works  on  this  principle,  combining  level  chunks  to 
create a level that is measured according to a statistical model of 
the emotions it would evoke in a player [10].  This work,  along 
with Togelius et al.'s 2007 work on generating tracks for racing 
games, uses an evolutionary algorithm to iteratively create similar 
levels  with  slight  modifications  [15].  These  approaches  differ 
from Polymorph by generating geometry in larger granularity, as 
well as in Polymorph's unique learning features (see section 4).

Smith et al. created a generator for 2D platformer levels based on 
a model of player action-rhythm, which is the basis for the level 
generation done in this project. This approach starts with a rhythm 

Figure 1.  Several possible mappings of geometry onto rhythm.

of desired player actions, such as run, jump or wait. The generator 
then chooses from sets of geometry that can fulfill each of these 
actions—the  same  starting  rhythm  can  produce  many  distinct 
level designs depending on the geometry selected for each action, 
as shown in figure 1. Because the generation is based on player 
actions  and  their  associated  level  geometry,  it  has  a  finer 
granularity of control  over  the level  design  than the previously 
mentioned techniques which use hand-authored level chunks [14]. 
All of these strategies for level generation have been offline full-
level  generation  techniques,  meaning  that  they create  an  entire 
playable  level  as  a  whole—usually  ahead  of  time,  rather  than 
generating parts of the level during play [16].  This is because a 
primary motivation  for  procedural  level generation  has been to 
create  improved  replayability  for  a  game,  which  can  be 
accomplished by giving the player a new level each time through.  
This  is  an  effective  strategy  for  creating  engaging  game 
experiences,  but  online  level  generation,  in  which  the  player's 
behavior alters the level as they play,  is a much more dynamic 
approach  to  the  core  challenge  to  which  Polymorph  responds: 
difficulty adjustment. 

The  game  Charbitat  is  an  example  of  online,  real-time  level 
generation,  where  the  player's  preference  for  interacting  with 
certain  elements  will  alter  the  game  world  to  increase  the 
prevalence of that element [9]. This focus on the world’s elements 
differs substantially from Polymorph’s focus on difficulty.

3. DATA COLLECTION MECHANISM
3.1 Tool
In order to generate parts of a level to match a player's skill level, 
we  need  both  a  model  of  difficulty  in  our  domain  of  2D 
platformer  levels  and  a  dynamic  model  of  the  player's  current 
performance. To answer these two questions—what makes a 2D 
platformer level difficult or easy, and how do we determine if a 
player is struggling or needs more of a challenge—we turn to a 
strategy of mass data collection and statistical machine learning.  
We created a data collection tool that asks a human player to play 
a short (approximately 10 seconds) level segment, collecting data 
on the level and the player's behavior along the way. The collected 
data  and  its  use  as  machine  learning  features  are  discussed  in 
more depth in section 4. After the player completes the level or 
their character dies, they are asked to label the level segment by 
answering  the  multiple  choice  question:  how difficult  was  this 
level segment? The label choices presented to the player are  1-
Easy through 6-Hard. Only data from players completing multiple 
levels is considered in order to avoid subjective difficulty ratings.



The level segments are generated by an adaptation of the action  
rhythm-based  generator  from [14],  described  briefly  in  section 
2.2.  We  do  not  put  any  restrictions  on  the  rhythms  used  to 
generate level segments,  since we want to consider all playable 
segments. We believe that difficulty in interesting 2D platformer 
levels  comes  largely  from  the  combination  of  adjacent 
components  and  not  just  from  the  presence  or  absence  of  a 
particular component (see section 4). This belief is the reason we 
limit the level segments to such a short length. With short level 
segments,  which  don't  contain  too  many level  components,  we 
attempt to control which independent variables, in this case level 
component interactions, might be resulting in the difficulty label 
the  player  assigned  to  the  segment.  We recognize  that  not  all 
aspects of level challenge are captured by these short segments, 
but  we  are  focusing  on  the  micro  level  of  component 
combinations rather than level-wide patterns or the introduction 
of new mechanics.

One potential drawback to this method of data collection is that a 
player  might  not  have  a  good  understanding  of  the  game 
mechanics  their  first  time  through  a  short  segment  and  might 
therefore rate it as more difficult than they would after they gained 
more experience. However, we believe that this is representative 
of  playing  a  full  game,  where  the  player  learns  the  game and 
increases in skill as they progress, so that a player participating in 
our  data  collection  over  many level  segments  will  help  us  to 
model  difficulty  for  an  average  player.  Also,  this  short  level 
segment  seems  ideal  as  the  amount  of  granularity  for  custom, 
player  performance-based,  generated level  chunks as  the player 
progresses through a level of the final game. Each time the player 
successfully  passes  through  a  segment  of  this  length  (or  dies), 
another segment of the same length will be generated and placed 
in front of them.

The tool  is Flash-based so that  it  can be easily distributed and 
used through most web-browsers by many simultaneous players. 
We have completed  a pilot  study with  more than one hundred 
undergraduate  game  design  students  from  UC  Santa  Cruz, 
allowing us to refine our  instruments  and the machine learning 
features discussed in section 4. The preliminary data and resulting 
refinements  have  been  encouraging  for  the  goal  of  the  data 
collection:  to  model  player  performance  and  difficulty  in  2D 
platformer levels. We are currently preparing to distribute the tool 
much more widely to collect data from thousands of participants 
over multiple level segment playthroughs.

3.2 Generate and Test
One of the early challenges in the development of Polymorph was 
the  tendency of  the  level  generation  algorithm to  create  many 
more easy level segments than difficult level segments, though the 
generator is capable of expressing levels across a wide range of 
difficulty.  This was due  to  the many possible  rhythm-geometry 
mappings that do not  present  a challenge for the player—a flat 
surface with several short gaps, for instance. This was problematic 
for  the  data  collection  mechanism,  since  the  players  assigned 
labels  for  low  difficulty  levels  far  more  often  than  for  high 
difficulty levels. The distribution of the data was therefore skewed 
toward the low-difficulty end of the spectrum. 

Figure  2.   Part  of  a  level  segment  in  Polymorph's  data 
collection  tool  with  the  player  character  on  the  left.  The 
segment includes a jump up over a gap, a coin and a moving 
enemy.
The distribution of level segments has been corrected by creating 
several  heuristic  critic  modules.  When  a  level  segment  is  first 
generated,  each of these critics  will  estimate its  difficulty on a 
particular  metric.  For  example,  one  critic  examines  the  level 
segment's action-density, while another simply counts the number 
of  potentially  deadly  level  components  present,  since  some 
components do not create the possibility of player death on their 
own. Once all of the critics have examined the level segment, it is  
classified into several  estimated difficulty categories,  which the 
data collection tool samples for segments presented to the player 
rather  than  choosing  a  random  unplayed  level  segment,  thus 
modifying  the distribution  of  segments  so  that  it  will  be  more 
spread across the range of level difficulty. The critics only decide 
which segments to show to players and are not considered for the 
final ratings of challenge.

4. LEARNING FEATURES
The first statistical model that we want Polymorph to learn from 
the collected data is a ranking of level segments according to their 
difficulty. As mentioned previously, we believe that difficulty in 
2D platformer levels is  related to  the combinations  of adjacent 
level components more than to the presence of a particular level 
component. Using the example shown in figure 2, a gap by itself 
is easy to overcome and a slow plodding enemy is not much of a 
difficulty, but by placing the enemy on the landing platform of the 
gap the level designer has created a much larger challenge for the 
player, requiring more exact timing and prediction of the enemy's 
movements. Therefore we have included as learning features not 
only the number of occurrences of a particular level component, 
but also the occurrences of any two-component adjacency in the 
level segment. Using the example depicted in figure 2 once again,  
the  feature  regarding  the  number  of  upward-rising  gaps  in  the 
segment is incremented, as is the feature regarding the number of 
gap-enemy adjacencies.  Other  level  segment-related  features  of 
interest include the average gap width, the total change in altitude  
of  the  platforms  in  the  level  and  the  width  of  the  largest  and 
smallest platforms.

Polymorph also needs a statistical model of the player's current 
skill  level.  The  data  collection  tool  keeps  track  of  features 
representing  the  player's  behavior  while  playing.  Some  of  the 
more interesting features are the amount of time the player spends 
standing still or moving backwards, the total completion time of 



the level segment, the number of coins collected, and whether the 
player  died or  completed the segment.  The data collection tool 
does not ask the player how well they think they were performing, 
but we assume that this is implicit in their answer to how difficult  
they think the level segment was.

Given  the  level-descriptive  features  we  will  apply  a  machine-
learned ranking algorithm such as Ranking SVM to rank all of the 
level  segments  generated  during  play  of  the  final  game  [4]. 
Meanwhile,  Polymorph  will  be  collecting  the  player  behavior 
features, which will be evaluated on a model trained with the data 
from the collection tool. Then, before the player progresses into 
the next segment of the level a new segment from the ranked list  
will be chosen according to the model of the player's current skill 
level. This way, as the player learns to play the game better and 
improves their personal skill, the level will increase in difficulty 
to  compensate  and  maintain  an  appropriate  challenge. 
Alternatively, if it becomes clear that the player is struggling, the 
next segment of the level will be chosen to reduce challenge.

5. CONCLUSION & FUTURE WORK
We have described the vision, completed work, and further plans 
for  dynamic  difficulty adjustment  in  the game Polymorph.  The 
player-specific adjustment is achieved by procedurally generating 
the  level  during  play.  At  this  time  we  have  created  the  game 
engine, the level generator, and the data collection tool, as well as  
run a pilot study. To complete the game we will collect data on a 
much larger scale with the online tool,  and we will  process the 
data as discussed in section 4 to create models of level difficulty 
and player performance. Final game polish will be applied, with 
commissioned artwork and tweaking of the mechanics based on 
evaluative playtests. 

The largest challenge for the development of Polymorph has been 
the task of designing features to collect from the generation of 
level segments. The features need to be broad enough to represent 
the  difficulty of  a  level  for  an  average  player  while  remaining 
specific enough to be generalizable to other, very different level 
designs. We are confident in the features we have chosen, but we 
do not claim to have created a perfect model of difficulty in 2D 
platformer levels. Considering the pair-wise adjacencies of level 
components will help to address the problem of difficulty arising 
from the  interaction  of  level  components  rather  than  from the 
presence of individual components.  However, in the analysis of 
challenging  hand-authored  platformer  levels  it  seems  that  the 
interaction  of more than two components  is  common.  Creating 
features to represent these more complicated interaction settings 
would  be an improvement  and is a  direction  we would  like to 
pursue with future iterations of Polymorph.

Procedurally generating level segments online,  in real-time as a 
method of dynamic difficulty adjustment  allows for intervention 
that is both a structural change and personalized to the player's 
skill  and  experience.  We  believe  this  will  give  Polymorph  a 
unique  play  experience  and  demonstrate  the  strength  of 
combining techniques from level generation and machine learning 
for dynamic difficulty adjustment.
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