
Graph Grammars for Super Mario Bros ∗ Levels

Santiago Londoño
University of Bonn

londono@cs.uni-bonn.de

Olana Missura
University of Bonn

olana.missura@uni-bonn.de

ABSTRACT
We assume that the structure of a level in a platformer game
has a profound influence on the enjoyment of players. An-
other assumption is that, given levels created by expert de-
signers, it is possible to extract and transfer their structural
properties to new levels. To make it an automatic process, in
this paper we first propose a graph-based representation of
Super Mario Bros levels to encode their structure. Next, to
abstract the structural elements we extend an algorithm for
learning a graph grammar, SubdueGL, to produce a stochas-
tic graph grammar. Then we describe our work in progress
on generating new levels from graphs produced by the graph
grammar.

Keywords
Stochastic graph grammars, graph data mining, game level
generation, procedural content generation

1. INTRODUCTION
In side-scrolling games such as Super Mario Bros, the player
interacts with a simplified, two-dimensional world made up
of elements from a finite set. Conventionally, specialized de-
signers build the levels of the game, applying their creativity
and experience to produce content exhibiting structural cor-
rectness (the player must be able to traverse the level from
start to end), interestingness for the player, and balanced
difficulty among other quality features.

Professional designers are able to consistently construct high
quality game levels. In other words, their expert knowledge
gets embedded in the resulting levels. We aim to create a
learning mechanism capable of extracting design concepts
from a set of human-authored levels and to use the acquired
knowledge to algorithmically generate new ones. To that
purpose we propose to use stochastic graph grammars in

∗Specifically, our application is aimed at generating levels
for the framework Infinite Mario Bros, a clone of the classic
Super Mario World originally published by Nintendo.

their both qualities, descriptive and generative. That is,
first, given a set of levels, we will learn a grammar that en-
codes and abstracts structural properties presented in these
levels together with their respective probabilities of occur-
rence. Next, the inferred grammar will be used to generate
new levels possessing the same properties.

2. RELATED WORK
PCG techniques have been used to automatically generate
content for computer games since the early eighties [5]. Al-
though the types of generated content, techniques and algo-
rithms employed are quite diverse, most of these applications
have the same general objective: to autonomously create el-
ements, such as missions [4], spaces [6], textures [16] and
levels. The last one in particular, has been amply explored
through a variety of approaches.

Search-based techniques, such as evolutionary algorithms,
genetic programming and other forms of stochastic optimiza-
tion have been employed in multiple ways. For instance,
Cardamone et al. [1] made use of a search-based, evolu-
tionary approach to generate FPS1 levels, which were repre-
sented as grids. Johnson [6] implemented a two-dimensional
cellular automaton that gives form to cave levels, also in
grid configuration, by randomly carving tunnels on an ini-
tial block.

The specific case of level generation for Super Mario Bros
has also been explored. For instance, in [14] levels were
abstracted as matrices and Markov Chains were employed
to randomly generate new content. Although the matrix
representation implicitly contains sound information about
the elements of a level and their relations, it does so in a
way that is too complex and expensive to analyze via high-
order Markov chains. This is a significant hindrance, as
these relations are major determinants of the structure and
quality of the level.

The PCG community starts to recognise the usefulness of
grammars in representing and generating levels. Two no-
table examples are presented by Dormans [4] and Shaker
et al. [12]. Dormans [4] builds level layouts for adventure
games over mission scripts, based on context-free and space
grammars. Shaker et al. [12] generate Super Mario Bros
levels. The authors use genetic programming to search the
space of levels derivable from a predefined grammar in a
combined approach called Grammatical Evolution [12].

1Acronym for the genre First-Person Shooter.



Smith et al. [13] developed Tanagra, a tool aimed at as-
sisting level design for platformer games. They represent
levels as sequences of predefined patterns, composed of a set
of basic elements of the game. These patterns are assem-
bled together through a rhythm-based approach, under the
direction of the designer.

The work of Smith et al. is based on the abstraction pro-
posed by Compton and Mateas [2], which models levels by
means of context-free string grammars. The grammars de-
fine how a set of patterns of varied complexity, can be put to-
gether to give form to a complete level. These patterns rep-
resent optimal sequences of basic game components, auto-
matically built through a hill-climbing algorithm. The PCG
process is graph-grammar driven and in principle similar to
our approach, as an initial graph is recursively expanded
to form a new level, following the grammar rules. How-
ever, both of the aforementioned approaches assume that
the grammars are provided and no mechanisms to automat-
ically learn them are discussed.

In this work we go a couple of steps further by using graph
grammars to encode the relationships between various ele-
ments of a level and by learning these grammars instead of
requiring them to be predefined.

To the best of our knowledge, graph grammars have not been
applied as yet to algorithmically generate Super Mario Bros
levels. Nevertheless, they have shown promising results in
diverse fields. Zhao et al. [17] proposed a graph grammar
based approach to discover patterns in the execution of pro-
grams. Cook and Holder [3] have also experimented with
the application of graph grammar learning to the discovery
of interesting structures in chemical compounds.

Müller et al. [8] developed CGA Shape, a computer graph-
ics model of building architectures. It consists of context-
sensitive shape grammars inspired by Lindenmayer Systems,
whose rules define the spatial structure of the shapes that
compose a building. The rules of the grammars describe se-
quences of geometric transformations that applied to shapes
and volumes, can be used to procedurally generate the struc-
ture and external details of a building.

CGA Shape was successfully tested by modeling buildings,
neighborhoods and even ancient cities and demonstrated to
be of great value for computer games. This intent of this
approach is very similar to ours and shape grammars are
closely related to graph grammars. However, the work of
Müller et al. does not aim at autonomously learning the
shape grammars, a task for which we deem graph grammars
more appropriate, as they allow graph data mining tech-
niques to be applied.

3. REPRESENTATION OF LEVELS
From an implementation perspective, Super Mario Bros lev-
els are represented as a matrix of bytes, with dimensions
width× height. Each entry corresponds to a sprite, defined
here as an atomic game element (e.g. a brick block, power-
up, coin, etc.). In this paper, we will refer to the matrix of
a level as its grid and denote it by M .

In contrast, from an analytical point of view, Super Mario

Bros levels are composed of elements that are not isolated,
but relate to each other in different ways. Certainly, the
matrix representation of a level implicitly contains all the
information about its elements and their interrelations, but
this information is encoded in a convoluted manner, mak-
ing access to it a daunting task. An explicit and succinct
representation of the levels is fundamental for the develop-
ment of effective algorithms for learning and procedurally
generating content. For instance, the ability to model the
relationships among level components is crucial to generate
correct results. Hence, we suggest to use graphs as a rep-
resentation of levels, where nodes are various elements and
edges encode their relationships.

3.1 Levels as graphs
We represent Super Mario Bros levels as directed graphs G =
〈V,E〉, with V a set of nodes and E ⊆ V × V a set of edges.
Both nodes and edges have labels in the sets ∆ and ∆E

respectively. The set ∆ is made up of the names of all the
game elements of interest, such as coins, power-up boxes,
rocks, pipes, brick blocks, etc. The set ∆E comprises the
relationships between these elements, as explained below.

3.1.1 Relationships among elements
One of the most significant advantages of using graphs, is
that they enable us to establish semantic relationships be-
tween the elements of the levels. Specifically, edges allow
to connect several elements and to give a meaning to those
connections. We use this capability to classify all level el-
ements of Super Mario Bros in various types, according to
their interaction with the player. In the current stage of the
project we have defined two types, which we consider major
determinants of the structure of levels:

Platforms are groups of solid sprites (e.g. brick blocks,
rocks, pipes) that are consecutive and lie on the same
row of the level matrix. They form solid positions upon
which the character can stand and whence he can reach
other elements.

In a level graph, platforms are represented by edges,
labeled as platform and connecting two nodes, respec-
tively the first and last sprite of the actual platform.
Both nodes must have labels corresponding to solid
sprites. In addition, platform edges have a length at-
tribute, stating the number of sprites it spans.

Along these lines, we denote platforms by p = (ps, pt) ∈
V ×V , where ps and pt are the start and end nodes. It
can be the case that ps and pt are the same node, which
entails that the platform consists of a single sprite.

Item clusters are subgraphs, denoted by C = {c1, ..., cn} ⊆
V . They represent conglomerates of sprites that are
not solid, but still interact with the player (e.g. coins,
power-ups, enemies). If the cluster contains more than
one sprite, each one of them has at least one neighbor.
That is, another sprite in the same cluster located at
a distance lower than an established threshold.

Item clusters are represented within level graphs, by
sets of nodes labeled as non-solid sprites. Each of these
nodes is connected with its closest neighbor, through
an edge labeled as cluster. Note that the definition
above allows for single-node clusters.



Figure 1: Reachability area of a platform, delimited
by the dashed lines. The triangles ys and yt depict
the reachability pyramids of the start and end nodes.

Additional types of elements may be devised in future it-
erations of the project, after we get our first experimental
results. These new types could be used to represent groups
of enemies at their starting positions. Regarding dynamic
elements (i. e. sprites with changing positions) such as en-
emies or moving platforms, we consider that they could be
modeled as nodes (or groups of nodes connected by edges)
representing their starting positions. The parameters gov-
erning the movement, could be set as attributes of these
nodes.

The concept of reachability, fundamental to our approach,
is described in terms of a relationship between nodes.

Let G = 〈V,E〉 be a graph representing a level grid M and
px ∈ V a node that is part of a platform. We define the
reachability pyramid of px, as the isosceles triangle having
px at the center of its base and spanning the area of M
directly above it.

Now, let v ∈ V be a node and p = (ps, pt) ∈ V × V a
platform. The node v is said to be reachable from p, if and
only if the position of v in M is contained in the reachability
pyramid of ps or pt, or the rectangle delimited by the top of
these pyramids and by ps and pt. Figure 1 illustrates these
ideas.

Finally, let p = (ps, pt), q = (qs, qt) ∈ V × V be two plat-
forms. We say that q is reachable from p, if and only if either
(or both), qs and qt are reachable from p.

Regarding the graph abstraction, reachability relationships
between a platform p and other platforms or item clusters,
are represented as edges with label reach, connecting the
node of p and of the reached element that are closest to
each other.

The importance of reachability edges arises from the fact
that they are a key tool to guarantee the playability of the
levels. In the particular case of Super Mario Bros (more pre-
cisely, on the version of the game our work is based upon),
a level is playable if and only if the player is able reach the
goal starting at his initial position. In turn, the latter condi-
tion can be guaranteed by properly defining the productions
of the graph grammar and the initial graph to be used on
the level generation process.

3.2 Transformation of level grids into graphs

In order to obtain the graph representation of the example
levels we will learn from, we implemented an algorithm to
transform a level in matrix form M (i. e. grid), into a graph
G. The structure of the resulting graph is a combination of
interconnected platforms and item clusters.

The algorithm consists of two major stages:

1. Detection of elements: platforms and item clusters
are detected by scanning the level grid M row by row.

Platforms are built by grouping adjacent sprites, found
at the same row and that are suitable to be part of a
platform.

Item clusters are constructed through a simplified ver-
sion of the GDBSCAN algorithm [11]. They are built
up starting at a non-solid, interactive sprite, then ex-
panding the cluster to its closest neighbor and repeat-
ing the process therefrom, until no further expansion
is possible.

2. Assembly of reachability edges: once all platforms
and item clusters in the map have been constructed,
the algorithm evaluates what elements are reachable
from what platforms and inserts reach labeled edges
accordingly.

This is performed by iterating over all the platforms
previously identified. For each platform, the algorithm
computes the reachability pyramid of its start and end
nodes, defined as in section 3.1.1.

It then finds all other nodes whose positions on the
grid are contained in either, the reachability pyramid
of the start or end node, or the area comprehended
between them (as shown in figure 1) and regards them
as reachable from the platform.

Finally, for each one of them, the algorithm computes
their distance to the start and end nodes of the plat-
form and connects them to the closest one via a reach-
labeled edge.

As the result, the transformation returns a graph represen-
tation of the level, as required by the learning algorithm.

Level grids are built from graphs in two stages: First, the
main structure of the level is constructed, by rendering the
platforms and item clusters on the grid. Second, adornments
such as background sprites are randomly added around the
main structure.

4. LEARNING FROM LEVEL GRAPHS
We hypothesize that human-authored, high-quality levels
contain design paradigms reflecting the knowledge of the
designers who created them. Furthermore, we assume that
this knowledge is encoded in a way representable by graphs.

Under these assumptions, graph data mining techniques can
be applied to extract the knowledge embedded in a set of
human-authored levels. Specifically, we implemented the
SubdueGL algorithm [7]. SubdueGL is based on the Subdue
algorithm originally proposed by Cook and Holder [3] for
the discovery of frequent substructures in graphs. A sub-
structure is a subgraph that can occur one or more times



in the input graph. Given a set of graphs (human-authored
levels in our case), SubdueGL learns a context-free graph
grammar, striving to achieve an optimal balance between
the size of the substructures and their frequency of occur-
rence. This criterion is called the MDL principle [3]. The
induced graph grammars are expected to define patterns fre-
quently observed in high-quality levels.

4.1 Node Label Controlled graph grammars
SubdueGL learns Node Label Controlled (NLC) graph gram-
mars [10]. An NLC graph grammar R is context-free and
has the form:

R = (Σ,∆, P, C, S) ,

where Σ is the alphabet of terminal and non-terminal node
labels, ∆ is the alphabet of terminal node labels, P is the
set of productions, C is the set of connection relations, S is
the initial graph. A single production from P has the form
z → α, with z ∈ Σ \ ∆ a non-terminal node label and α a
graph, i. e. it defines how a node with a non-terminal label
can be replaced by a subgraph α. A connection relation is
an ordered pair (s, t) ∈ ∆×∆.

The node label controlled aspect of R, implies that α would
be connected to the neighborhood of the replaced node by
means of a connecting mechanism [10]. For a production rule
z → α it operates by adding an edge from a node labeled s
in the neighborhood of z, to a node labeled t in α, for each
connection instruction (s, t) ∈ C.

As aforesaid, SubdueGL discovers the set of best substruc-
tures in the input graph, with respect to the MDL prin-
ciple. For each substructure αi in this set, a production
P = zi → αi is added to the resulting NLC graph grammar.

4.2 Stochastic NLC graph grammars
To accurately represent the occurrences of found substruc-
tures, we extend SubdueGL to learn stochastic NLC graph
grammars (SNLCGGs). Figure 2 illustrates the structure of
these graph grammars as learned by our algorithm.

An SNLCGGs G, has probabilities
pz,1, ..., pz,nz associated to its productions z → α1, ..., z →
αnz , in such a way that for a particular left-hand side z,∑nz
j=1 pz,j = 1. Hence, during the learning a “probability

of being applied” has to be estimated for each discovered
substructure and associated to the derived productions.

As proposed by Oates et al. in [9], a maximum-likelihood es-
timate for the probability of application of a production z →
α, provided a set of example graphs GX = {G1, ..., Gm}, can
be computed as:

p̂ (z → α) =
c (z → α|GX)∑
δ c (z → δ|GX)

We employ SubdueGL to infer an NLC graph grammar from
the set of example graphs GX. On each iteration, SubdueGL
discovers frequent substructures and synthesizes them as
right-hand sides of productions z → α. Thus, the total num-
ber of times a production was observed when building the
graph grammar, namely c(z → α|GX), can be computed as
a byproduct of SubdueGL. Suppose that SubdueGL is run

Figure 2: A stochastic graph grammar.

on a source graph Gm ∈ GX and as the result, a set of
substructures B = {αi : i ∈ [1, k] ∧ αi ⊆ Gm} are chosen
to become productions. Each substructure appears c (αi)
times in the input graph. The resulting productions are:

P = {z → αi : i ∈ [1, k] ∧ αi ⊆ Gm}, with z non-terminal

Their associated probabilities are computed as:

p̂ (z → αi) =
c (αi)∑
δ∈B

c (δ)

Note that, it also holds
∑
δ∈Bp̂ (x→ δ) = 1.

As an illustrative example, figure 3 depicts the SNLCGG
inference process as performed by our implementation of
SubdueGL. The input consists of an example graph, rep-
resenting a simple level composed of platforms of two types
of tiles (square and triangle nodes) and of some clusters of
coins (circle nodes).

As aforementioned, SubdueGL strives to find substructures
that are frequent and as large as possible within the example
graph. It starts by taking each different node label appear-
ing in the example graph as candidate substructure. This is
shown at step b) on figure 3. Note that a substructure has a
schema, which is simply a subgraph where the nodes have no
particular identifiers, only labels and the set of occurrences
of that very schema in the input graph, called instances.

Then, the instances of each substructure are extended one
edge at a time, in order to discover a new set of larger sub-
structures (step c)). The compressing power of each sub-
structure is computed as a measure of how much would the
size of the input graph be reduced, should all instances of the
substructure be replaced for a single node (a non-terminal).
In this example, such measure was computed as the num-
ber of edges and nodes in the schema, times its number of
instances and was called compression. SubdueGL aims at
compressing the input graph as much as possible (i. e. fol-
lows the MDL principle), thus it selects the substructures
with the top three compression values to be extended at the
next step.

The extension process is repeated on the best three substruc-
tures, until no instances can be extended further or until the
maximum number of extensions (provided as parameter) has



Figure 3: Simplified run of SubdueGL and the re-
sultant SNLCGG.

been reached.

At the end, the best three substructures will become the pro-
ductions resultant of this iteration of the inference process.
Each schema is set as right-hand side of the productions
and a new non-terminal is generated as left-hand side. The
probabilities of applying each production are computed as
specified in section 4.2.

5. LEVEL GENERATION
The level generation algorithm will first create a new graph
using the learned grammar: It will expand an initial graph
(e.g. a non-terminal node representing the start of the level)
by iteratively applying the productions of the stochastic
NLC graph grammar. On each iteration, the algorithm ex-
pands a non-terminal node with label z. To do so, it selects
a production z → α, in accordance with the probabilities
having z at the left-hand side. We expect the resultant gen-
erated graphs, to be structurally similar to the examples
from which they were derived. In the next step, the so gen-
erated graph is transformed into a level grid and additional
details such as background sprites will be rendered onto it.

6. CURRENT STATUS OF THE PROJECT
We have implemented the algorithm to transform level grids
(matrices of bytes) into graphs as described in section 3.2.
The stochastic version of SubdueGL, as specified in section
4, is also implemented and SNLCGGs are now being gener-
ated. The level generation process is yet to be implemented.
This includes the algorithm we will use to expand random
graphs from graph grammars, the transformation of a level
graph into an equivalent grid and the rendering of details.

We plan to perform an evaluation to verify whether the gen-
erated levels preserve the quality features of the examples
and at the same time, are novel enough to amuse human
players. To do so, we intend to use metrics proposed by
Shaker et al. in [12] to compare the levels used as train-
ing instances with the newly generated levels. Furthermore,
we would design an experiment involving human players to
qualitatively evaluate how enjoyable are our results and to
compare our system against existing level generators for In-
finite Mario Bros, namely (i) the default generator included
as part of the framework, as developed by Markus Pers-
son; (ii) the GE generator by Shaker et al. [12], based on
grammar evolution; (iii) the winner of the Mario AI Cham-
pionship 2012 [15], an approach driven by the player’s score,
as presented by Chen et al. A set of levels will be generated
through each system and split into random groups. Each
participant will get assigned a different group to be played
and at the end of the trial, they will be asked to rank the
levels as to their preference.

7. REFERENCES
[1] L. Cardamone, G. N. Yannakakis, J. Togelius, and P. L.

Lanzi. Evolving interesting maps for a first person
shooter. In Applications of Evolutionary Computation,
pages 63–72. Springer, 2011.

[2] K. Compton and M. Mateas. Procedural level design
for platform games. In AIIDE, pages 109–111, 2006.

[3] D. J. Cook and L. B. Holder. Substructure discovery
using minimum description length and background



knowledge. Journal of Artificial Intelligence Research,
pages 231–255, 1994.

[4] J. Dormans. Adventures in level design: generating
missions and spaces for action adventure games. In
Proceedings of the 2010 workshop on procedural content
generation in games, page 1. ACM, 2010.

[5] M. Hendrikx, S. Meijer, J. Van Der Velden, and
A. Iosup. Procedural content generation for games: A
survey. ACM Transactions on Multimedia Computing,
Communications, and Applications (TOMCCAP),
9(1):1, 2013.

[6] L. Johnson, G. N. Yannakakis, and J. Togelius. Cellular
automata for real-time generation of infinite cave levels.
Proceedings of the 2010 Workshop on Procedural
Content Generation in Games, pages 1–4, 2010.

[7] I. Jonyer, L. B. Holder, and D. J. Cook. MDL-based
context-free graph grammar induction and applications.
International Journal on Artificial Intelligence Tools,
13(01):65–79, 2004.

[8] P. Müller, P. Wonka, S. Haegler, A. Ulmer, and
L. Van Gool. Procedural modeling of buildings,
volume 25. ACM, 2006.

[9] T. Oates, S. Doshi, and F. Huang. Estimating
maximum likelihood parameters for stochastic
context-free graph grammars. In Inductive Logic
Programming, pages 281–298. Springer, 2003.

[10] G. Rozenberg and H. Ehrig. Handbook of graph
grammars and computing by graph transformation,
volume 1. World scientific Singapore, 1999.

[11] J. Sander, M. Ester, H.-P. Kriegel, and X. Xu.
Density-based clustering in spatial databases: The
algorithm GDBSCAN and its applications. Data
mining and knowledge discovery, 2(2):169–194, 1998.

[12] N. Shaker, M. Nicolau, G. N. Yannakakis, J. Togelius,
and M. O’Neill. Evolving levels for Super Mario Bros
using grammatical evolution. In Proceedings of the
IEEE Conference on Computational Intelligence and
Games, pages 304–311. IEEE, 2012.

[13] G. Smith, J. Whitehead, and M. Mateas. Tanagra: A
mixed-initiative level design tool. In Proceedings of the
Fifth International Conference on the Foundations of
Digital Games, pages 209–216. ACM, 2010.

[14] S. Snodgrass and S. Ontañón. Experiments in map
generation using Markov chains. In Proceedings of the
9th International Conference on Foundations of Digital
Games, volume 14, 2014.

[15] J. Togelius, N. Shaker, S. Karakovskiy, and G. N.
Yannakakis. The Mario AI championship 2009-2012. AI
Magazine, 34(3):89–92, 2013.

[16] D. Yoon and K.-J. Kim. 3D game model and texture
generation using interactive genetic algorithm. In
Proceedings of the Workshop at SIGGRAPH Asia,
WASA ’12, pages 53–58, New York, NY, USA, 2012.
ACM.

[17] C. Zhao, K. Ates, J. Kong, and K. Zhang. Discovering
program’s behavioral patterns by inferring
graph-grammars from execution traces. In Proceedings
of the 20th IEEE International Conference on Tools
with Artificial Intelligence, volume 2, pages 395–402.
IEEE, 2008.


