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ABSTRACT

The use of procedural content generation to support adaptive games
is starting to gain momentum in current research. However, there are
still many open issues to tackle, namely the reusability of method-
ologies. Our research focuses on reusable and generic methods for
linking the procedural generation of 3D game worlds with gameplay,
as measured by player modelling techniques. As the interface for
that link, we propose the use of gameplay semantics, a knowledge
representation technique that allows our case-based generator to
match content to player models. We present and discuss the imple-
mentation of our proposed method in an existing game, Stunt Play-
ground. Gameplay semantics is created by designers in a generic
way and is then used to procedurally generate player-matching Stunt
Playground game worlds, both at the design and game stage. Current
results show that our approach can automatically create such adap-
tive game content, thus effectively bridging game world designers,
procedural generation and gameplay.

Categories and Subject Descriptors

1.2.4 [Computing Methodologies]: Knowledge Representation
Formalisms and Methods; 1.3.5 [Computer Graphics]: Compu-
tational Geometry and Object Modeling

General Terms
Algorithms, Design

Keywords

adaptive game worlds, procedural content generation, semantics

1. INTRODUCTION

Several researchers agree that adaptive games are a valuable
contribution for further engaging players in more fun, balanced
and effective gameplay experiences [2, 8, 24]. Accordingly, the
game industry also shows an increasing interest in dynamic player-
centered adaptation, as demonstrated by games like Remedy’s Max
Payne, Valve’s Left 4 Dead or Bethesda’s The Elder Scrolls V -
Skyrim.

The main idea behind adaptive games is to recognize and com-
prehend their players’ interaction and, ultimately, intelligently adapt
game elements, in a dynamic fashion, to improve the gameplay
experience. When adaptive in such a way, games can not only favor
a more unpredictable and flexible game experience, but also widen
its appeal to a larger audience, and even increase its replayability.

In this field, we are especially interested in the adaptation of
complex 3D game worlds. Specifically, our focus lies on making

the procedural generation of game worlds mutually dependent on
individual gameplay. This means that the content generated and
offered to players responds to the variation on their performance
and behavior. As an example, consider a role playing game where
the dungeons being progressively generated include more or less
complex topology and props, depending on the measured player
performance.

We recently proposed the use of gameplay semantics as the in-
terface to match the player behavior and experience with the game
content generator [6]. With this semantics, i.e. embedded gameplay
knowledge about virtual world objects, beyond their geometry, our
framework can support the generation of player-matching game
worlds, in games where this is applicable and valuable.

This paper demonstrates the suitability and power of this ap-
proach, discussing our first results and the implementation of a
modification of an existing game, Stunt Playground. We explain
how our semantic approach can be easily applied to create a game
with player-matching game worlds. This is achieved by integrating
our semantic framework with a generation process for game worlds
and with player and experience modeling techniques. In this case,
we added semantic layout solving techniques for generating Stunt
Playground game worlds and also created new player and experi-
ence models. We showcase our results, i.e. game worlds generated
at game stage, discussing the added value of the new adaptive Stunt
Playground.

This paper is structured as follows: in Section 2 we briefly sur-
vey game adaptivity and semantics. In Section 3, we give a brief
overview of our previously proposed semantic generation frame-
work and highlight the new contributions for the actual generation
process. In Section 4 we explain the integration of our methods with
Stunt Playground and the player modeling and content correlation
methods. Section 5 presents and discusses our results, preceding
our conclusions, on Section 6.

2. RELATED WORK

The architectural principles that should be behind game adaptivity
have already been discussed by several researchers [2, 8, 24]. In
essence, the players’ performance is recorded and used to create
a model of the player. Given a game state, these models can also
be used to assess and predict the players desired experience of the
next game state. Depending on the approach, both behavior and
experience models can be used, in conjunction or not, to steer an
adaptation and generation engine. This engine adjusts or gener-
ates the appropriate game components to better suit the player, i.e.
adapted to the models’ data. Adaptive games typically require this
two-step methodology: player modeling and content generation. It
is therefore relevant to survey not only adaptation and generation
techniques, as done in our recent and more in-depth survey [7], but



also what steers them, i.e. behavior and experience modeling, as
well as what we propose to support them, i.e. semantics.

2.1 Player behavior and experience modeling

With player behavior modeling, gameplay information and met-
rics are processed to create knowledge about the behavior and perfor-
mance of the player. Behavior modeling has recently been broadly
surveyed in [14]. Several techniques are already considered suc-
cessful in capturing and modeling some aspects of player behavior.
Supervised machine learning has been used to model player skills [3]
and preferences [15]. Unsupervised machine learning has also been
used: player clustering has been applied to classify player styles and
preferences [11]. Other approaches beyond machine-learning have
been used in domains where performance is a stronger requirement.
Case-base reasoning and heuristic vector-based methods are able to
model, respectively, player preferences [13] and player skills [23].

With player experience modeling, gameplay information and the
game state are analyzed to determine and predict how the game was
or should be experienced. It makes sense to look at these two angles
separately: behavior modeling relates to player behavior (execution)
and experience modeling relates to player experience (perception).
Experience modeling was recently thoroughly surveyed in [24]. The
same type of techniques used in behavior modeling can typically be
applied to experience modeling. What changes is what is being mea-
sured and modeled. Recent contributions have been made to model
the difficulty perceived by players and predict the optimal challenge
level [3, 16]. More complex experience quantitative models can
already predict: fun, challenge, boredom, frustration, predictability,
anxiety, [9] or other affective states like engagement [1].

2.2 Adaptation and Generation

Generation methods for the adaptive games domain are still less
researched than modeling techniques. It makes sense that modeling
methods should be the first ones to establish, since they are the
first problem needing solution. However, since player modeling is
already establishing itself, some adaptive generation research has
already been done. Game elements such as NPC behavior, game
narratives, quests and scenarios have been subject to related work
and research. We extensively surveyed such approaches in [7].

As for the adaptive generation of game worlds, to the best of our
knowledge, research has so far, been exclusive to simple and linear
level structures, typically 2D. This tendency is explained by the
already mentioned stronger research focus on the player modeling
methodologies. Still, procedural content generation has already been
proposed for adapting racing tracks, using evolutionary algorithms
[17] or platform game levels, using exhaustive search of generated
content [12] and recombination of annotated level segments [3].

2.3 Virtual world semantics

Semantics in virtual worlds is a recent research field, raised for the
need of more complete and ubiquitous information on virtual worlds
and objects. In this direction, smart objects were proposed [4],
containing information about the possible interactions that can be
executed on them. Peters et al. [10] took the notion of smart objects
further by creating objects with information about their functionality,
how NPCs can interact with them, and where important features of
the object are situated.

Our own previous work on semantic modeling explores these
ideas further and allows building upon it to generate player-matching
game worlds. We define semantics, in the context of game worlds,
as all information about the world and its objects, beyond their
geometry [18]. This includes object properties, high-level attributes
and functional information, as well as interrelationships (geometric,

Semantic generation framework

- Game Observer

content_TO

i i |- skils:
{ Playerand |- Preferences: B |
i\ Experience | |-Style:d
Models {— - Experience: X |1
- Y

Content Utility Model

|
Semantic
gameplay
descriptions

Player = T
@$ Semantic library

Designer

Generator

G(£.Y) = content_T1

Game World

Figure 1: Semantic generation framework: Semantic game-
play descriptions are derived from the semantic library and are
retrieved to match the behavior/experience models and corre-
lated content.

functional, etc) among different objects. Each object of the game
world typically carries all its semantics. A semantic library [5],
i.e. a hierarchical class (relational) database partly based on the
WordNet ontology, is responsible for storing all game objects and
its semantics. Game designers use this library to specify semantics,
atop geometry, on game worlds and its content, in a generic and
reusable way.

Semantics imported from this library can be used as knowledge
to automatically control and constrain algorithmic procedures that
generate specific world content. This approach has already been suc-
cessfully deployed, e.g. in interior layout solving [20], procedural
filters [21] and building generation [22].

3. SEMANTICS AND GENERATION

In a previous article [6], we outlined our proposal for a frame-
work aimed at generating player-matching content for complex and
immersive game worlds. In this section we will first summarize this
framework, to give context to the rest of this paper. For more details
on gameplay semantics and the semantic library, we refer to [6]. In
this section we will also outline new contributions on the generation
process (layout solving), not presented before.

3.1 Semantic framework

Our semantic generation framework is responsible for integrating
behavior and experience modeling with procedural content gener-
ation, possible through the use of game world semantics. Fig.1
illustrates the components of the semantic generation framework.

Designers use the semantic library to deploy information on sev-
eral semantic classes (or entities), e.g. objects, attributes or groups.
Gameplay semantics is one of the many layers of information that
can be deployed. It describes the gameplay value of the different
entities and can be specified in terms of: (i) gameplay experiences,
(i1) player behavior features and (iii) involved game actors. For
example, a designer can specify that a car ramp (the semantic en-
tity) entails a certain level of fun (experience) for a reckless driver
(behavior), when used by the player (actor) in a racing game. Game-
play semantics are defined by designers, are reusable and can be as
generic as the designer wants them to be.

Semantic gameplay descriptions are automatically converted from
the gameplay semantics layer in the library and are inspired by case-
based reasoning. They are knowledge containers which encode valid



combinations between semantic entities (the car ramp) and enabled
player experiences (fun). They are individually organized by the
case preconditions each one applies to, i.e. the player behavior
features (reckless driver). This way, adaptive content generation
becomes a retrieval problem where the solution is to find the most
appropriate semantic gameplay description, i.e. the best case, for a
given moment.

The input of such a retrieval process is given by the behavior and
experience models, integrated with the framework. Behavior models
supply the behavior features (a certain level of reckless driving) to
retrieve the matching gameplay descriptions. Experience models
help retrieval by supplying not only the next expected gameplay
experience (a certain level of fun), but also the previous measured
gameplay experience (e.g. was not having fun). Additionally, we
developed a game observer component to further help the retrieval
process. It correlates which game content enabled the previous
gameplay experience. The assumptions are that: (i) if a correlation
function associates the measured behavior, the previous gameplay
experience and the observed content that enabled it, and (ii) if a
semantic gameplay description exists with that same association,
then (iii) the remaining content-experience combinations in that
description can be considered valid, namely the ones that include
the next desired gameplay experience.

In our framework, this generation process can be emergent, since
we allow retrieval to be somewhat loose. Although descriptions
can have multiple behavior features as case preconditions, we allow
retrieval to find descriptions for an input which includes only a
subset of those. The same partial retrieval applies for the input
correlations of observed content and measured gameplay experience.
This means that finding multiple descriptions and combining their
retrieved content is possible and increases variability beyond what
designers declared. Solving retrieved content is up to the post-
retrieval generator.

3.2 Post-retrieval content generation

After retrieval, it is still necessary to synthesize such player-
matching content into a meaningful game world (segment). The
post-retrieval generation we describe here is responsible for this.

For post-retrieval generation, we use our own previous work on
semantic layout solving (see [19] for details). This choice was
motivated by two reasons: (i) the input of the semantic layout solver
fits very well with the output of the retrieval generation process,
and (ii) the solver is already fully integrated with the semantic
library. The use of other generators should be possible, as long as
the generator can synthesize large scenes from individual content.

Given an initial layout, the semantic layout solver can stochasti-
cally position individual objects in that layout, complying with a set
of rules. These placement rules take into account what is defined in
the semantic library. Each entity in the library includes a semantic
representation consisting of object features, i.e. tagged 3D shapes.
The object features we used are Clearance and OffLimits. A Clear-
ance feature cannot overlap with any other features except for other
Clearance features (shared open areas) and an OffLimit feature can-
not overlap with any other feature type (solid areas). Additionally,
we used object features back, front, top, bottom, left and right, which
define the respective 3D shape of each of those object boundaries.
These features are used in placement rules to derive valid locations
for each entity in any layout. The layout solver includes rules for
against, around and on. As an example, if the semantic entity plate
has an on rule with the feature fop of the semantic entity table, the
solver places the plate somewhere on the table top.

Each placement rule requires its own individual procedure, within
the layout solver, to calculate all valid locations. These procedures

are the geometric realization of the respective placement rule and
return a group of multiple possible locations. As an example, the
individual procedure for the on rule uses the Minkowski subtraction
between both features of both semantic entities to calculate the
polygonal shape that contains all possible valid locations. The
layout solver is also responsible for selecting the best order in which
to solve placement rules. The order to pick entities to place is
defined by a dependency graph, with the following sorted criteria :
(1) least outgoing rules to entities not yet picked, (ii) most incoming
rules, (iii) most outgoing rules to already picked entities, (iv) largest
entity. If semantics are correctly defined in the library, then they,
together with the ordering algorithm, are enough to solve layouts,
and if there are no available valid locations left, an entity is simply
not placed.

3.3 Contributions for semantic layout solving

Regarding the semantic layout solver, the existing object features
and placement rules, as defined by designers, are the basis for post-
retrieval generation to work. The retrieval process feeds its result,
i.e. the player-matching content, to the solver who, supported by the
semantics of the library, creates a valid game world.

However, upon analysis of the layout solver, we identified ad-
ditional placement rules and object features necessary for player-
matching game world generation. As a result, these were created
and added to the semantic layout solver.

The new empty when placed object feature defines a shape which
cannot overlap with any other object feature, but only at the moment
when the entity possessing this feature is being placed. Afterwards,
that shape can overlap with any entity or feature. This feature is
typically used to express a precondition to a placement rule with
another entity. For example, if a ramp should be placed before some
obstacle, then the placement of the ramp should consider and reserve
some empty space in front of it for future occupation by an obstacle.
The implementation of such a new feature builds upon the Clearance
and OffLimits features. For each placement rule and its two semantic
entities, a Minkowski sum is used to calculate an area containing
all locations for which the empty when placed shape would overlap
with the already present shapes (objects, Clearance, OffLimits, etc).
This area is then subtracted from the possible placement locations.

The new follow on placement rule constrains the possible loca-
tions of a source and a target entity. This rule is used to specify that
a source entity should be placed in a layout, aligned with an already
placed target entity, i.e. where both form a trajectory. For example,
an obstacle should be placed following on an already placed car
ramp, in a certain trajectory. This new rule implied the creation of
new additional features: mid-axis x, y and z. These features define a
plane shape which cuts an object in half, in each of the 3D coordi-
nates. For flexibility purposes, we also added similar spaces for cuts
in quarters. The new and existing features can be used to define the
trajectory of the source and target entities.

The implementation of this new rule involved a new dedicated
procedure, easily explained. For a target feature (e.g. mid-axis
x of a car ramp), a new extruded line is defined by calculating
two incremental points (the incremental range is either defined
from designers parameters or, if not present, randomly) in the same
direction as the feature. The center point of the source entity is
then randomly placed somewhere on that line, rotated to respect the
source feature plus an optional rotation parameter. Even though this
follow on procedure constrains the placement of the source entity,
there are still some degrees of randomness and, thus, variability: the
initial placement of the target entity, the range of the placement line
(if not defined by designers) and the selected point in the placement
line.
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Figure 2: Stunt Playground gameplay

4. PLAYER-MATCHING GAME WORLDS

This article documents the integration of our semantic generation
framework into an adaptive game. In this section we will outline its
implementation and research issues.

We chose to integrate our approach with an existing game, in
order to assess how generic and applicable the semantic generation
framework is. The chosen game was Stunt Playground ', illustrated
in Fig.2. In this single-player game, players can drive around, free
to do stunts in an arena with a variety of props. It is an open sandbox
game with no scoring, progression or goals. It includes a game
world editor, where the user can create, save, load and play arenas,
apart from the ones already included in the game.

For this research, we developed and added a new game mode. In
this adaptive game mode, the player starts in a predefined initial
arena. After playing a game cycle of five minutes, a new arena is
generated each time to better fit the player’s style. Unique arenas
are generated every game cycle for every player. This new mode
entailed the creation of methods for player and experience modeling,
content correlation, gameplay semantics and procedural content
generation, which will now be described.

4.1 Behavior and experience modeling

As stated in Section 3, our framework needs to integrate behavior
and experience modeling, in order to generate player-matching game
worlds. For Stunt Playground, we developed our own behavior and
experience models. Due to the simplicity of the game mechanics, we
opted for heuristic vector-based models, which seem to be effective
enough, as demonstrated by Westra er al. [23]. All the heuristics
described below, for both models, were the result of empirically
observing various informal game sessions with several player types.

For modeling player behavior, we defined two simultaneous scales
able to capture a stunt driver’s playing style. The Evel Knievel scale
measures how much of a reckless stunt driver a player is. On the
other side, the Sunday Driver scale measures how much cautious a
player is in performing stunts. We used two simultaneous measure-
ments because we aimed to capture overlaps between one behavior
and the other. Our initial idea was to investigate the existence of a
dual complex behavior where a player might drive around acting as
cautious and reckless simultaneously. For example, using only one
measurement would be less expressive in characterizing a player
who drives very fast, but does not interact with any prop or does any

!Stunt Playground was developed by Tim FitzRandolph using the
Ogre3D engine. Available as freeware at: http://walaber.com

jump.
For both measurements, we use the following heuristics, which
are logged and measured at run-time, and stored in a vector:

e i : ratio between the distance spent in the air (jumps) and the
total driven distance;

e j: ratio between the time spent in the air (jumps) and the total
game time;

e k: ratio between the measured average speed and the maxi-
mum possible speed;

e [ : ratio between the number of flips which were made, and a
maximum number of flips.

Heuristic k is particularly interesting since it hides a fifth mea-
surement. On each arena, the player can choose from a group of
vehicles with different maximum speeds, ranging from a bus to a
racing car. However, the maximum speed in heuristic k is fixed
to the maximum speed achieved by the fastest vehicle. This way,
this heuristic indirectly reflects the impact of choosing a faster or
slower vehicle, an important factor in characterizing a player. As
for the maximum number of flips in heuristic /, they are calculated
proportionally to the props available in the arena, with an average
of flips per prop per time experimentally determined.

The following formulas define the final values calculated at the
end of each game cycle, and determine, respectively, the measure-
ments for the Evel Knievel and Sunday Driver scales:

Vi-d) |, (Vi-D , (VE=3) Vi-p
@ T 0-p T -9 +2( (14))
5

R e e R )

where J7 i, 3, f represent, respectively, reference values for ratios
i,j, k and [, expected for the ideal neutral player and dependent on
the props in the arena. Thus, these formulas capture the normalized
average deviation from the experimentally determined neutral be-
havior. We choose to apply quadratic functions to each heuristic to
better capture the faster growth rate observed for each measurement.
‘We applied a cubic function and weight 2 to heuristic / to give addi-
tional importance to the number of flips, a maneuver which is both
harder to perform and a better indicator of recklessness.

Due to the pure sandbox nature of Stunt Playground, we decided
that the adaptation goal would be the maximization of the game
fun factor, in every scenario. Although fun is a complex concept to
measure, the limited nature and goal of Stunt Playground’s game
mechanics encouraged us to simplify it to a more attainable level.
Therefore, for modeling the player experience we defined a mea-
surement for capturing the fun experienced by players. For this, we
used the following heuristics:

EK =

|

m : initial fun value, for finalizing an arena (game cycle);
e 1 : difference between both behavior modeling scales;

e o : number of re-spawns (if stuck somewhere or bored, the
player can choose to be relocated back to the initial position);

p : ratio between the time spent totally stopped and the total
game time.
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Heuristic m was fixed as half of the maximum fun value (1), to
represent an average game session. Heuristic n was introduced to
capture an implicit goal of gameplay: to experience the progression
towards a gradual specialization in one preferred type of behavior
(in this case recklessness vs. cautiousness). The calculation of
the fun factor in the end of each game cycle is easily explained:
heuristics m and n are added, and heuristics o (normalized against an
experimental maximum reference value) and p are subtracted from
that value. The additions and subtractions are weighted to reflect
the experimentally observed relative importance of each heuristic.
Additionally, the result is normalized between O and 1.

Validation of both the behavior and experience models was per-
formed empirically by both observing game sessions and informal
questionnaires. Both models were initially considered valid and
expressive in capturing the intended information.

4.2 Correlation with content

As illustrated in Fig.1, the measured behavior and gameplay
experience need to be correlated with the game content that enabled
them. These correlations are used as inputs for the retrieval of
semantic gameplay descriptions. In our previous article [6], we
proposed a set of criteria to be implemented by a game observer. Our
hypothesis is that these criteria can be sufficient to correctly establish
those correlations. The proposed criteria were: (i) content interacted
by players, (ii) by NPCs, (iii) by the game engine, and (iv) content
which is used in the measurements or game metrics considered by
the behavior and experience models (e.g. the heuristics above).

In Stunt Playground’s case, the implementation of the game ob-
server’s criteria was straightforward. The simple nature of the game
mechanics, and the behavior and experience models explained above,
both show that the content interacted by players is enough to account
for the correlations. Therefore, the Stunt Playground game observer
keeps track of the arena props a player interacts with and correlates
that list with the behavior and experience models’ final values.

4.3 Gameplay semantics

Gameplay semantics is defined by designers, using a semantic
library editor for that purpose. For Stunt Playground, we defined
all the required semantics, not only for the gameplay semantics
layer, but also all remaining necessary knwoledge (e.g. placement
rules and features for semantic layout solving). Although seman-
tics is specified manually, there are some mechanisms in place to
prevent this task from becoming too tedious. The use of WordNet,
inheritance between semantic entities or the creation of stand-alone

gameplay semantics (to then re-apply to different entities faster)
are examples of this. Fig.3 illustrates a screenshot of the semantic
library editor, Entika [5].

For this case study, we created all semantics before designing
the player models. The goal was to keep semantics independent
from the modeling methods, able to capture all the knowledge the
semantic library offers. The only constraint was the mandatory
integration requirement: gameplay semantics should use the same
vocabulary as what is being modeled. In this case, the player styles
for Evel Knievel and Sunday Driver and a Fun parameter.

As explained, we decided that the goal of adaptation would al-
ways be to maximize fun. This meant to apply a Fun parameter,
at maximum value (100% or 1), to different semantic entities, de-
pending on the type of player they apply to, i.e. a value for the Evel
Knievel or Sunday Driver player styles. We also applied a lower fun
value to semantic entities, depending if they were not deemed appro-
priate for the corresponding player styles. We devised this binary
behavior (fun vs. not fun) due to the simplicity of Stunt Playground
and the research goals for this paper (implement, integrate and test
our framework).

We created six levels of player styles: low, medium and high
proficiency as Evel Knievel, and low, medium and high proficiency
as Sunday Driver. Each level was quantified as rates: 20% to 50%
(low), 51% to 74% (medium) and 75% to 100% (high). These
rates were defined following conversations with game designers and
players.

The described gameplay semantics originated six semantic game-
play descriptions. They refer to the six independent levels of player
styles and contain different correlations of semantic content and fun
levels. Although these descriptions are disjoint in nature (due to
the six independent player style levels), they can still be combined
during retrieval. This happens because, as explained before, the
input of the retrieval process always includes simultaneous player
modeling measures for the Evel Knievel and Sunday Driver styles.

4.4 Generation

We integrated our approach with Stunt Playground (developed in
C++) using both the semantic generation framework and the seman-
tic layout solver (both developed in C#). The behavior/experience
modeling and content correlation methods were developed directly
in Stunt Playground’s code (due to their dependence to the game’s
nature) and acted as input for the retrieval process. In the end of
each game cycle (each arena), the models’ values are used to re-
trieve content from the appropriate semantic gameplay descriptions.



Table 1: Behavior and experience model data used as input for the generation of each game world in the corresponding example.

The meaning of each parameter is described in Section 4.

Fig. 4a Fig. 4b Fig. 5a Fig. 5b Fig. 6a Fig. 6b

i (m/m) 18.1/1013.5 39/892.6 211.2/1206.9 780.6/1505.2 105/859.6 84.2/851.3
Jj (s/s) 2.3/300 10.3/300 35.6/300 69.6/300 41.3/300  29.3/300
k (kmh/kmh) 52.7/150  49.1/150 60.7/150 79.4/150 58.2/150  66.3/150
[ (#flips/#props) 0/6 0/10 4/14 24/18 1/6 1/6
EvelKnievel 0 0 0.62 0.75 0.21 0.2
SundayDriver 0.79 0.65 0 0 0.4 0.4
o#) 6 10 19 12 6 2

p (s/s) 25 18.5 223 6.7 15.6 9.1
Fun (before) 0.73 0.7 0.66 0.83 0.49 0.54

(a)

Figure 4: Stunt arenas generated for players modeled as high (a) and medium (b) Sunday Drivers.

Although descriptions already include knowledge about the quantity
of each semantic entity (in this case, stunt props), we also made that
quantity proportional to the values of the player models. The seman-
tic entities contained in the gameplay descriptions refer to the same
content used in the game since they include the same identifiers and
the same model meshes (Ogre3D models, in this case).

After content retrieval, the semantic layout solver is executed
to generate a new player-matching stunt arena. The layout solver
places the retrieved content within the inputted mesh of the arena
(which is always the same), following the semantic placement rules.
As explained before, Stunt Playground includes a game world editor
to create, save and load stunt arenas. Since this editor uses XML
as the format to represent game worlds, we are able to store all
generated arenas for each player.

Concerning generation, we developed a game design prototyping
tool to generate player-matching stunt arenas 2. This tool works out-
side the game, at the design stage, and within a clone of the semantic
library editor. Designers can input values for gameplay semantics
levels (as explained in the previous subsection) and a matching arena
is generated as an XML file. This arena can then be loaded in Stunt
Playground and played. This prototyping environment is a valuable
contribution for creating game worlds at the design stage, fitted for
input player types and game experiences. It can be used both for
testing purposes or to deploy worlds in a game where there are no
player modeling methods available, but where the player/gameplay
profile is known beforehand.

“Demo videos of the design tool and the game adaptation available
at http://graphics.tudelft.nl/~rval

(b)

S. RESULTS

Our results for this case study relate to the success in procedurally
generating player-matching game worlds. Due to the lack of space,
we decided to exclude analysis of the design prototyping tool since
its results are analogous to the game. The difference is that the input
for game-time generation is supplied automatically by behavior
and experience models and for the prototyping tool by gameplay
semantics parameters manually inserted by designers.

In this section we present our early results, i.e. some examples of
typical player-matching game worlds generated during gameplay.
‘We saved all generated stunt arenas and logged all the data, both
collected from players and calculated by the models. For this section,
we showcase some examples that we identified as representative
of the global results. Table 1 shows which data matches with the
examples chosen.

Fig.4a and Fig.4b show game worlds that were generated in re-
sponse to a detected non-maximized fun experience of players mod-
eled with, respectively, a high and a medium value of the Sunday
Driver style. Each of these game worlds used different retrieved se-
mantic gameplay descriptions, containing different semantic content.
The main variations, besides the quantity of content (e.g. the amount
of hurdles), resides in some of the content. The less extreme Sunday
Driver arena (Fig.4b) does not include cones, but adds new types of
small ramps and new possible layouts for them (notice the liftoft-
landing ramp layout in Fig.4b). In these examples, the amount of
variability is limited by the number of stunt props available in the
game. Of the 15 available props, we only deemed 8 as appropriate
for this player type. This ends up not hindering gameplay that much,
since the game is naturally biased towards encouraging players to



(a)

(0)

Figure 5: Stunt arenas generated for players modeled as medium («) and high (b) Evel Knievels.

Figure 6: Two stunt arenas, both generated for a similar input of a player modeled as low Evel Knievel and medium Sunday Driver

be Evel Knievels. Since the goal of the game is to perform stunts,
it was unusual for players to assume a Sunday Driver performance,
even with less props.

Fig.5a and Fig.5b are examples of game worlds generated for,
respectively, a medium and a high value of Evel Knievel player
style. The variations observed between them are also explained
by the retrieval of different semantic gameplay descriptions, which
include different quantities and different (more complex) layout
possibilities (whereas the props nature is approximately the same).
Fig.5b shows the typical upper limits (in terms of complexity and
richness) of exclusively Evel Knievel-based game arenas, since it
tries to maximize fun for a high Evel Knievel player. This is also the
the performance lower limit of our framework: generation took, in
average, 5.1 seconds, a value acceptable while players wait between
arenas. This value is mostly dependent on the performance of the
semantic layout solver.

Even though low proficiency levels are not exemplified here,
the progression of Fig.4a through Fig.5b demonstrates that our
framework is able to generate game arenas that are highly dependent
on the player behavior and experience. They were generated for
different players, but always for the third game cycle (i.e. as the
second generated arena), showing that the game content at that stage
is strongly adapted to how the game was played until then.

Fig.6a and Fig.6b illustrate arenas that were generated for players
modeled as part Evel Knievels and Sunday Drivers. They demon-
strate the emergence in our generation framework and the variability
of the generator for a similar input. The emergence is possible
through the retrieval of multiple semantic gameplay descriptions,
for both Evel Knievel and Sunday Driver, and is illustrated by the
presence of content appropriated to both player types. These arenas
are emergent in a sense that the rules of their generation (i.e. the
gameplay descriptions) were not entirely described by designers, but
are derived from a combination of those. The semantic layout solver

is responsible for the variability between both examples. This is
illustrated not only by the quantity of props and their layout (notice
the white tunnel ramps on both cases), but also the content that was
actually placed, e.g. the tunnels of Fig.6a and the hurdles of Fig.6b.

Finally, we point out that these emergent cases did not occur as
much as expected. We can identify two reasons for this observation.
First, this can be explained by the nature of Stunt Playground, with
a gameplay naturally biased towards high values of Evel Knievel
models. The second reason relates with our player behavior mod-
eling goals. In our case, emergence is only dependent on the dual
simultaneous classification of a player as both Sunday Driver and
Evel Knievel. We find two related reasons for this lack of emergence:
(i) both measurements (see Section 4.1) are not disjoint enough (as
our aim was) and actually act as one single scale, and (ii) players
simply do not behave like that. We plan to improve our models to
better consider these observations.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we presented our results in applying gameplay
semantics within a game, to generate player-matching game worlds.
We demonstrated that our semantic-based methods are generic and
re-usable enough to be integrated with an existing game, in this
case Stunt Playground. This approach, based on designer-defined
gameplay semantics, can use procedural content generation to create
player-matching game worlds. These game worlds are not only fitted
to the players behavior and experience, but also include the expected
variability of procedurally generated content. We also confirmed that
our generation process can have some emergent behavior, beyond
what was specified by designers. Our semantic framework can
therefore not only bridge procedural content generation, gameplay
and designers, but also add some emergent but controllable aspect
to the generation of player-matching game worlds.



As for future work, we intend to perform a formal user evaluation
of our Stunt Playground adaptive modification. We are currently
integrating our approach with other different games and player mod-
eling methods, in order to investigate: (i) its generic applicability
to other domains, (ii) its ability to function with another genera-
tor, fully on-line (i.e. at run-time), and (iii) its integration with an
existing and more complex player modeling method.
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