
The Use of Functional L-Systems for Scenario Generation
in Serious Games

Glenn A. Martin
University of Central Florida

3280 Progress Drive
Orlando, FL 32826
+1 (407) 882-1300

martin@ist.ucf.edu

Charles E. Hughes
University of Central Florida
4000 Central Florida Blvd.
Orlando, FL 32816-2362

+1 (407) 823-2341

ceh@cs.ucf.edu

Sae Schatz
University of Central Florida
3100 Technology Parkway

Orlando, FL 32826
+1 (407) 882-1300

sschatz@ist.ucf.edu

Denise Nicholson
University of Central Florida
3100 Technology Parkway

Orlando, FL 32826
+1 (407) 882-1300

dnichols@ist.ucf.edu

ABSTRACT
So called “serious games” have used games (in a sense, virtual
environments) for reasons other than entertainment. Particularly
within the training community, they have garnered increasing
attention over recent years. However, means of generating new
scenarios that have increased training effectiveness has continued
to be lacking. Because creating new scenarios is a time-intensive
and costly exercise. existing scenarios are commonly reused with
only minor changes, a practice that can hamper training
effectiveness over time.

We have been pursuing a thrust of research in automated scenario
generation. In this paper, we present our work in the use of
Functional L-systems for generating scenarios. We first review
some of our previous work in defining scenarios; then show how
Functional L-systems are used to build up the scenarios.

Categories and Subject Descriptors
I.6.7 [Simulation and Modeling]: Simulation Support Systems –
environments.

General Terms
Algorithms, Management, Design, Human Factors, Languages.

Keywords
Scenario Generation, Simulation, Training, FL-Systems.

1. INTRODUCTION
Serious games (and virtual environments, in general) have great
promise for use in training. However, for the most part, scenarios
are created manually, which is a costly and time-intensive
process. The consequence is that a small set of scenarios is
commonly re-used over and over, with few or no changes, which
can cause reduced training effectiveness.

We are pursuing a line of research investigating procedural
generation for automating the scenario building process. The
initial focus of our work is in supporting the creation of scenarios
for Fire Support Teams in the U.S. Marines. However, the system
we are building addresses the general case and is, thus, adaptable
to many other domains.

Fire Support Teams coordinate artillery strikes and ground attacks
by aircraft on targets through a complex set of actions. They
typically observe the targets and direct such strikes by providing
direction to the firing units. Scenarios based on their training
must provide the team position, artillery and airstrike assets, and
target(s). Figure 1 shows an image from one common Forward
Observer application used for training [1].

Figure 1. A Forward Observer application

2. SCENARIO-BASED TRAINING
The use for scenario generation for training arises from the desire
to increase the effectiveness of the training. In fact, scenario-
based training is distinguished from simulation-based training.
Here, simulation-based training refers to the simply use of a
virtual environment to provide practice of some skills or tasks. In
contrast, scenario-based training is based on the targeted creation
of specific simulator events to create desired psychological states.

Scenario-based training is now widely accepted. Through its use,
trainees can learn to integrate multiple supporting skills, cope
with realistic distracters, practice their higher-order cognitive
skills, and exercise naturalistic decision making [2]. However, it
has been found that development of these advanced cognitive

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, to republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee.

PCGames 2010, June 18, Monterey, CA, USA
Copyright 2010 ACM 978-1-4503-0023-0/10/06... $10.00

skills requires extensive varied experience [3][4]. This notion
drives the need for scenario generation to further improve training
effectiveness.

3. EXISTING SCENARIO GENERATION
Before we consider our own approach, we review just a few
contributions from others. A complete review is beyond the
scope of this paper, but here we focus on works that provide some
key concepts. Many fields have elements to offer scenario
generation (such as interactive and narrative storytelling);
however, our focus here is on actual systems built with training in
mind.

One event-based approach to scenario generation was the Rapidly
Reconfigurable Event-Set Based Line-Oriented Evaluations
(RRLOE) Generator, developed for Federal Aviation
Administration (FAA) flight simulators [5][6][7]. RRLOE builds
scenarios from small, FAA-approved scenarios. A set of 128
heuristics determine the adequacy of each constructed scenario.
RRLOE is highly successful and is still used by the FAA for pilot
qualification testing and training.

Similar to RRLOE, the Interactive Specification Acquisition
Tools, ISAT, uses heuristics to build a scenario using smaller
scenario pieces [8]. However, in the case of ISAT, each scenario
piece satisfies some subgoal. In addition, it performs analysis to
determine error states in the heuristic model; for example,
identifying states that are never executed and those with
conflicting “next” states. ISAT also allows users to intercede in
the generation process, permitting scenarios to be more finely
tailored.

Pffefferman developed a system for automatic scenario generation
associated with combat simulations [9]. His focus was on
adapting a structured “mission file” in order to create a scenario.
The mission file included information on the situation, mission,
execution, service support, and command and signal elements.
An important aspect of his work is in the use of domain-specific
information (military doctrine in his case) for filling in gaps
missing from the mission file.

The Framework for Enabling Adaptive Scenario Generation for
Training (FEAST) uses fine-grained training context analysis and
knowledge modeling methods to support generation of scenarios
[10]. Its focus is on dynamic, adaptive training and is unique in
its use of captured domain knowledge. A “domain ontology” is
formed and drives the scenario generation process [11][12].

Tbese previous scenario generation efforts provide many lessons
learned. RRLOE and ISAT show the possibility of building
scenarios from smaller, premade mini-scenarios. The major
advantage of this approach is that it allows smaller elements to be
independently developed and then certified as “valid” and stored
for later use. Pfefferman’s approach shows us that the structure
that a specific domain may offer can be key to addressing the
automated generation desire. In addition, it also allows such a
system to have some knowledge to guide it in filling in gaps in
information. FEAST takes it one step further showing how an
operationalized, comprehensive domain ontology can help drive
scenario generation as well.

Even with these significant contributions, many challenges
remain. In particular, despite the possible advantages of working

within a single structured domain, there are strong incentives
(e.g., cost, consistency, verifiability and tool integration) to build
a generation system that can adapt to multiple domains. Most
importantly, we want to avoid a “stovepipe” approach where we
build a system for only one set of training applications.

Still, before we can consider our own system, the concept of a
“scenario” must be defined and made concrete enough to support
an automated approach. In the remainder of this paper, we will
briefly review our work in defining a scenario in concrete terms
before going into details of our automated approach.

4. SCENARIO DEFINITION
Before a system can be built to automate (or even semi-automate)
the scenario generation process, a scenario must be defined in
terms that such an automated process could be built around. In
our previous work, we developed a detailed model of a scenario
for this purpose [13]. Scenarios are defined in terms of training
objectives, baselines, augmentations and vignettes (themselves,
defined in terms of triggers and adaptations). Each is referred to
as a facet of the scenario and may also have a set of
“requirements” that must be defined and met.

Training objectives are a list of specific tasks, appropriate for the
domain, that potentially require training. Training scientists will
further split these objectives into Knowledge, Skills and Attitudes
(KSAs) that focus the task on a particular learning objective. The
selection of training objectives drives the rest of the scenario
generation process since it determines exactly what is to be
trained.

Baselines are the simplest form of scenario. They are minimal
(they may contain only the trainee within a particular map or
database) and take place in perfect conditions (perfect lighting
and no detrimental weather such as rain). Baselines provide the
foundation for the scenario generation process. When generating
a scenario, a single baseline is chosen that is appropriate for
fulfilling the training objective(s) selected.

Tomizawa and Gonzalez very nicely define the difference
between scenarios and situations [14]. Situations define a
snapshot in time while scenarios include events that occur to
define the overall exercise. Within our scenario model,
augmentations help define the initial situation of our training
scenario. Specifically, augmentations are used to define initial
elements of the scenario. This can include the type and position
of any friends or opposition, or it may include overall effects
throughout the scenario (such as nighttime or rain). Together
with a baseline, the augmentations define the initial condition
(situation) of the scenario.

Vignettes are “mini-scenarios” and provide for events that may
occur during the scenario (or exercise) itself. Vignettes add the
time element to the scenario and help distinguish the scenario
from a situation. We build vignettes in terms of a set of triggers
and a set of adaptations. Triggers are events that can be detected
and can be chained together to form a more complex notion. It
may include elements such as a specific exercise time being
reached or an explosion going off near a specific location. An
adaptation can be added to a trigger (or a trigger chain) to cause
some resulting behavior. Example behaviors include creating a
new entity (addressing the problem of a key entity being killed
too early in a training exercise) or killing an entity (if a munitions

round falls near an entity but does not kill it, it may be desirable
to kill the entity anyways).

5. SCENARIO BUILDING
Obviously, there is a wide range of scenarios that can be built.
When building a scenario, we use a notion of “scenario
complexity” in deciding what should be in a scenario. We define
scenario complexity as a quantity between 0 and 100, although
we often split the range into three portions representing novice,
intermediate and advanced complexities. Once a desired
complexity is chosen (usually based upon the trainee’s past
performance profile), the scenario is built up to that level. When
considering complexity, the goal of the scenario building process
is to create a scenario within a specific complexity range (since
achieving a specific single value would be difficult).

Each of the baselines, augmentations and vignettes has an
assigned complexity level. Typically, this is a number between 0
and 100 and is chosen by a subject matter expert. As mentioned,
before choosing training objectives, an overall desired complexity
level of the scenario is entered. As the baselines, augmentations
and vignettes are chosen, the current scenario complexity level is
increased and tracked. Scenarios must be within the defined
complexity range to be considered valid for the given trainee.
Only once a scenario is deemed valid may it be exported to the
specific training applications.

Once the facets forming the basis for a scenario are chosen, the
scenario is conceptually built. However, there is one final step
necessary. Scenario facets will specify a particular component of
a scenario (such as a Target), but often they will leave some
parameters of the facet unspecified. For example, the type and
position of an entity representing a Target may need to be
specified.

Given this approach, we can support a manual scenario generation
process. A user can select the complexity and training objectives
desired; then a baseline, zero or more augmentations and zero or
more vignettes are added. The user then satisfies the
requirements of each facet that are unspecified. Each facet adds a
complexity cost to the total scenario (a simple addition of costs is
currently performed). The system enforces the desired
complexity level and will not allow the user to export the scenario
unless it is within the correct complexity level range. However,
this alone does not support automatic or semi-automatic scenario
generation.

6. PROCEDURAL GENERATION
While we wish to support a manual scenario building process (to
encourage acceptance of the overall process), our main focus is on
supporting automatic or semi-automatic scenario generation. The
cost of building scenarios is a major problem in the simulation
and training domain. This, coupled with recent impressive
demonstrations of procedural generation, motivated us to consider
the potential use of procedural modeling as a mean to address this
problem.

6.1 Previous Scenario Generation Work
A complete examination of previous work in this area is beyond
the scope of this paper. However, in this section we review just a
few of the most relevant papers related to our research.

Shape grammars were first used for representing architecture by
Stiny [15]. In general, they define the replacement of lower detail
items as well as rules to add, scale, translate and rotate shapes.
Applied to scenario generation, components within the scenario
can be altered by performing operations defined within the
grammar. Within shape grammars, rules are applied sequentially
(as is typical in a grammar-based system such as this).

Lindenmayer systems (L-systems) use formal grammars to define
how components are altered [16]. Similar to shape grammars, L-
systems are defined by a set of variables, a set of constants, a start
state of the system and a set of production rules. However, one
major difference is that L-systems apply the production rules
repetitively in parallel rather than sequentially (serially) as in
shape grammars. L-systems use all production rules that match at
each derivation step and trigger them simultaneously.

7. FUNCTIONAL L-SYSTEMS
Functional L-systems (known as FL-systems) are an extension of
L-systems [17]. The primary difference is that FL-systems use
terminal functions whereas L-systems use the traditional terminal
symbol. The terminal functions can be executed during the
rewriting process and can provide side-effects during the process.
For example, this allows creation of objects or evaluation of
decisions at each step in the rewriting process. Marvie et al. use
this approach to create a scene graph of a building scene [17].

Both L-Systems and FL-Systems can be thought of as “growth”
approaches where the components are refined over time. Müller
states that “parallel grammars like L-systems are suited to capture
growth over time” whereas systems such as shape grammars with
“a sequential application of rules allows for the characterization
of structure” [18]. Structure approaches create a generic
representation and then refine it.

A question in our research is whether generic scenarios can be
generated and then refined, and how the refinement process would
be procedurally governed. Therefore, we are pursuing a FL-
System approach for scenario generation as growth of scenarios
seems to better fit our conceptual model.

FL-systems provide a technique that allows the creation of
scenario elements based on the terminal symbols in the grammar.
In addition, the terminal functions allow hierarchical elements to
be created to fulfill the scenario requirements. For example, a
series of vignettes can be assembled together into a larger
scenario using this approach.

8. SCENARIO GENERATION
Recall that some of the facets of the scenario described earlier
may contain requirements. These are components that the facet
requires but is not defined inherently within the facet itself. For
example, one augmentation may add an additional target without
necessarily defining the type or position of that target.

Our technique for semi-automatic scenario generation uses FL-
Systems as the procedural system. The rules are domain-
dependent and are built to satisfy the requirements of the set of
training objectives contained within that domain. We use the
rules to create elements within the scenario and to more
intelligently resolve the requirements given by the facets.

For example, adding the “additional target” augmentation would
cause a “Target” requirement needing to be resolved. The FL-
system addresses these unresolved elements. Specifically, the
unresolved elements map into symbols of our grammar. The
grammar takes the form of:

<predecessor> : <condition> <successor> : <probability>

where the <predecessor> is replaced by the <successor> under the
probability <probability> if the <condition> is true. This basic
structure is the same used by Müller [18].

As a simple example, consider the following set of rules:

Rule 1: {SCENARIO} : {TO1} : 1.0

Rule 2: {TO1} : {TARGET}{A}{OBS} : 1.0

Rule 3: {A} : {artillery}{POSITION} : 1.0

Rule 4: {OBS} : {observer}{POSITION} : 1.0

Rule 5: {TARGET} : {tank}{POSITION} : 0.5

Rule 6: {TARGET} : {apc}{POSITION} : 0.5

Rule 7: {POSITION} : {position} : 1.0

Symbols are surrounded by braces. Those in all capital letters
represent non-terminals and those in all lowercase represent the
terminal functions. Here we have a simple set of rules for the
creation of a target, an observer of that target and some artillery
unit to shoot at that target. Rule 2 lists the basic components
needed by Training Objective 1. Rules 3 and 4 have terminal
functions that will cause the creation of each respective entity
(Rule 7 consolidates the position selection by calling that
respective terminal function). Rules 5 and 6 show how
probability can add variety by selecting different target types.
Obviously, the set of rules can be made much more complex to
provide even greater capabilities and variety than this simple
example can show.
The chief advantages of FL-systems in this application are two-
fold. First, by using terminal functions as opposed to terminal
symbols, the application has access to higher-level reasoning in
that the functions can have some advanced computation built
within them. Second, the terminal functions allow postponing
resolving requirements, which allows the basic rule system to be
built with a fewer number of rules.
The limitations of FL-systems include the additional work
necessary to author the rule systems and the need to write the
terminal functions themselves. However, both limitations are
minimal in that each is only performed once per training domain.
When another training domain is desired (a rehabilitation
scenario, for example), then a new set of rules and terminal
functions must be written.
We have built our system into a tool known as the Procedural
Yielding Techniques and Heuristics for Automated Generation of
Objects within Related and Analogous Scenarios, or
PYTHAGORAS. It is built as a “scenario generation engine” in
that it provides the core capabilities needed to build scenario
generation applications (much like a game engine allows the
creation of individual games). This is important in order to
provide the ability for building scenarios for different domains.

We have built our first application, a scenario generation system
for Fire Support Teams known as COGS, on top of this engine.
Figure 2 shows a snapshot of COGS in manual use mode showing
the facet library on the left, the scenario editor window in the
middle and the list of requirements (some satisfied so far; others
not) on the right. A status window in the lower-left shows the
current state of building up the scenario.

Figure 2. Snapshot of COGS application

The automated mode consists of a single button “Auto-generate”
that processes these steps automatically. The FL-System is used
to choose scenario facets taking into account the scenario
complexity desired and variety in facet selection. The terminal
functions of the FL-System become particularly important when
satisfying the “requirements” of each scenario facet. The extra
capability provided from a function (as compared to a symbol)
allows the application to more intelligently choose parameters
(entity types and position, for example) as necessary.

9. CONCLUSION
In this short paper, we have reviewed our previous work in
defining a scenario and then presented our work in procedural
generation of scenarios built around this definition. We use
Functional L-systems for our system as the use of terminal
functions provides the additional power we need to create
elements within the scenario and satisfy requirements of those
elements. Our work is built into an engine known as
PYTHAGORAS and our first application, COGS, which focuses
on building scenarios for training of Fire Support Teams. FL-
Systems provide a powerful mechanism for resolving the required
parameters of scenario facets.

10. ACKNOWLEDGMENTS
This work is supported in part by the Office of Naval Research
Grant N0001408C0186, the Next-generation Expeditionary
Warfare Intelligent Training (NEW-IT) program, and in part by
the National Science Foundation Grant IIP0750551. The views
and conclusions contained in this document are those of the
authors and should not be interpreted as representing the official
policies, either expressed or implied, of the ONR or the US
Government. The US Government is authorized to reproduce and

distribute reprints for Government purposes notwithstanding any
copyright notation hereon.

11. REFERENCES
[1] Forward Observer PC Simulator (FOPCSIM). Retrieved on

April 23, 2010 from
http://www.delta3d.org/article.php?story=200411151533204
56

[2] Cannon-Bowers, J. A. and Salas, E. 1998. Team performance
and training in complex environments: recent findings from
applied research. Current Directions in Psychological
Science, 7(3): 83-87.

[3] Ross, K. G., Phillips, J. K., Klein, G., and Cohn, J. (2005.
Creating Expertise: A Framework to Guide Simulation-
Based Training. In Proceedings of I/ITSEC, Orlando, FL:
NTSA.

[4] Salas, E., Rhodenizer, L., & Bowers, C. A. 2000. The design
and delivery of crew resource management training:
Exploiting available resources. Human Factors, 42(3): 490–
511.

[5] Bowers, C., Jentsch, F., Baker, D., Prince, C., and Salas, E.
1997. Rapidly reconfigurable event-set based line
operational evaluation scenarios. In Proceedings of the
Human Factors and Ergonomics Society, 4, 912–915.

[6] Jentsch, F., Abbott, D., and Bowers, C. 1999. Do three easy
tasks make one difficult one: studying the perceived
difficulty of simulation scenarios. Proceedings of the 10th
International Symposium on Aviation Psychology
(Columbus, Ohio).

[7] Jentsch, F., Irvin, J., and Bowers, C. 1997. Differences in
situation assessment between experts and prospective first
officers. In Proceedings of the 9th International Symposium
on Aviation Psychology (Columbus, Ohio). 1228–1232.

[8] Hall, R. J. 1998. Explanation-based scenario generation for
reactive system models. In Proceedings of the 13th
Conference on Automated Software Engineering (Honolulu,
HI).

[9] Pfefferman, M. W. 1993. A Prototype Architecture for an
Automated Scenario Generation System for Combat
Simulations. Thesis, Air Force Institute of Technology (Air
University).

[10] Erraguntla, M., Benjamin, P. C., and Mayer, R. J. 1994. An
architecture of a knowledge-based simulation engine. In the
Proceedings of the 1994 Winter Simulation Conference (San
Diego, CA). Society for Computer Simulation International,
673-680.

[11] KBSI . 2008. FEAST: Framework for Enabling Adaptive
Scenario Generation for Training. Retrieved from
http://www.kbsi.com/.

[12] Benjamin, P. 2008. Knowledge based simulation: Methods
and enabling technology. Tutorial presented at I/ITSEC
2008 (Orlando, FL).

[13] Martin, G. A., Schatz, S., Hughes, C. E. and Nicholson, D.
2010. What is a Scenario? Operationalizing training
scenarios for automatic generation. In Proceedings of
Applied Human Factors and Ergonomics (Miami, FL).

[14] Tomizawa, H. and Gonzalez, A. 2007. Automated scenario
generation system in a simulation. In Proceedings of
Interservice/Industry Training, Simulation and Education
Conference (Orlando, FL).

[15] Stiny, G. 1975. Pictorial and Formal Aspects of Shape and
Shape Grammars. Birkhauser Verlag.

[16] Prusinkiewicz, P. and Lindenmayer, A. 1990. The
algorithmic beauty of plants. Springer-Verlag.

[17] Marvie, J., Perret, J. and Bouatouch, K. 2005. The FL-
system: A Functional L-system for procedural geometric
modeling. The Visual Computer. 21, 5, 329–339.

[18] Müller, P., Wonka, P., Haegler, S., Ulmer, A. and Van Gool,
L. 2006. Procedural modeling of buildings. ACM
Transaction on Graphics (SIGGRAPH Proceedings). 25, 3,
614-623.

