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ABSTRACT 
A key problem in methods that automatically generate terrain which incorporate game 

level designs is a lack of quantitative measures that capture common game design 

elements. In this paper, we investigate a set of graph-connectivity and space-based 

metrics which can be used to classify area types that are commonly found in video game 

terrains. We evaluate the significance of each metric in differentiating area types by 

taking samples from a set of existing game levels with a known set of areas. Lastly, we 

demonstrate the potential of the metric set by creating classifiers that attempt to 

determine an areas’ type based on its set of metrics. 
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INTRODUCTION 
Development of automated approaches for the design of game terrain is hindered due to 

there being no defined set of measures that quantitatively measure the suitability of a 

section of terrain for a particular purpose. Existing terrain generation techniques typically 

focus on aesthetic qualities rather than level design, while many level design generation 

techniques are not focused on terrain generation. 

Many level design generation techniques work by restricting the problem to two 

dimensions. Such work includes Ashlock et al.’s (2011) method of generating maze-like 

levels, which uses a genetic algorithm (GA) to generate incorporate desired paths during 

level generation. Dormans (2010) and van der Linden & Bidarra (2013) took level design 

generation further and use mission/action graphs along with generative grammars to 

generate levels which fit a desired mission. This produces levels in such a way that the 

player is forced to experience game events in a desired order. Hartsook et al. (2011) 

introduced a similar method using a GA to generate Role Playing Game (RPG) levels, 
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which, like Dormans’ and van der Linden & Bidarra’s approaches, forced the player to 

experience story events in a chronological order. 

Some work has been done towards integrating game level design into virtual terrain by 

incorporating simple design elements into the terrain generation process. Olsen (2004) 

developed a method of generating game terrains using an efficient erosion algorithm. 

This created large, flat sections of terrain on which to place buildings and other game 

objects. This approach was designed around the real-time strategy (RTS) game genre and 

has limited use as a generic approach. Other work performed by Frade et al. (2010) also 

focuses on generating terrain with a flat area of desired size. Togelius et al. (2010) 

introduced a method using a multi-objective GA to generate RTS maps with level design 

elements including placement of resources, height advantages, and map symmetry. The 

downsides to this approach are the simple terrain representation, which results in 

unrealistic and un-detailed terrain, and their focus on the RTS genre, which prevents this 

from being a more generic approach. Smelik et al. (2011) proposed a framework where 

designers can place constraints within a virtual environment. These constraints interact 

with the environment as it is built, maintaining the requirements enforced by the 

constraint (such as enforcing line-of-sight between two areas). 

These techniques are a start to generating complex three dimensional level designs, but 

there are still many game environment design elements to be considered. Hullett & 

Whitehead (2010) describe ten game design patterns commonly found in first-person 

shooter (FPS) game levels, including hidden areas, open areas, vantage points, choke 

points, and strongholds. These design elements have largely been ignored in procedural 

level generation and this is perhaps due to being unable to automatically identify these 

elements within a virtual environment. This article presents a collection of graph 

connectivity and space-based metrics, which we demonstrate are capable of 

differentiating game design elements in a 3D terrain environment. To demonstrate the 

effectiveness of these metrics for this purpose, we use three different classifiers to 

classify a dataset of area types described by Hullett & Whitehead. Only five of the design 

elements specified in Hullett & Whitehead were used in this research due to our approach 

classifying area types based on their physical properties, where five of the ten design 

elements described in Hullett & Whitehead were not types of areas. 

The rest of this paper is organised as follows: The chosen metrics are detailed in 

“Preliminary Concepts”, followed by the results of attribute analysis and classification 

from three types of classifiers in “Experiments and Results”. Lastly a discussion of the 

results and the conclusion are presented in “Conclusion”. 

PRELIMINARY CONCEPTS 
Our research uses a collection of space and graph-connectivity metrics to represent area 

types. This section describes what an isovist is, how it is generated, and lists the isovist 

and graph-connectivity metrics which are used in this research. 

Isovist Metrics 
An isovist (Benedikt, 1979) is the non-occluded space that is visible from a given 

location. Properties of an isovist are used in architecture to aid in building an 

environmental design. Notably, isovists have been used in the serious game “Supervisor” 

(van Bilson & Poleman, 2009), which is used to train oil rig supervisors. [USED FOR 

WHAT] 
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Isovists are commonly represented as a collection of vectors, called radials, which 

originate from the given location. The magnitude of an isovist’s radial is equal to the 

distance of the nearest occluding obstacle along the radial’s direction from the isovist’s 

origin and is capped at a maximum view distance. 

We used 3D isovists represented as 1024 radial vectors facing in random directions from 

the isovist’s origin. Figure 1 shows an example 3D isovist of 1024 radials, with some 

radials intersecting walls and others reaching maximum view distance. 

 

Figure 1. A 3D isovist with 1024 radials. Some of the isovist’s radials are hitting 

occluding obstacles, and others reach maximum view distance. 

Using this representation there are a number of measures which can be calculated, 

including those defined in Benedikt (1979) and Conroy-Dalton & Dalton (2001). All of 

the isovist metrics we use are included in Benedikt (1979) and Conroy-Dalton & Dalton 

(2001) with the exception of Area Size, which we obtain as a graph node property. A 

complete list of the isovist metrics used in this research is shown in Table 1. 
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Isovist Attribute Name Isovist Attribute Description 

Area Size Surface area of flat terrain around a given location. 

Isovist Average Radial Length Average distance from a given location to its 

isovist’s perimeter. 

Isovist Dispersion The difference between the values of the mean 

and the standard deviation of  the isovist’s radial 

lengths. 

Isovist Drift 3D The distance between the isovist’s origin and the 

isovist’s centre of gravity. 

Isovist Drift 2D Same as Drift 3D but ignores the Y (Up) axis. 

Isovist Maximum Radial Length Maximum distance from a given location to its 

isovist’s perimeter. 

Isovist Minimum Radial Length Minimum distance from a given location to its 

isovist’s perimeter. 

Isovist Skewness Skewness of the distance from a given location to its 

isovist’s perimeter. 

Isovist Sphericality How well the isovist volume approximates a sphere. 

Isovist Standard Deviation Standard deviation of distance from a given location 

to isovist perimeter. 

Isovist Variance Variation in distance from a given location to its 

isovist’s perimeter. 

Isovist Volume Area that can be seen (is not occluded) from a given 

location. 

Table 1. A list of the isovist measures used in this research. 

Graph Attribute Name Graph Attribute Description 

Degree Centrality Number of edges connected to a node. 

Eigenvector Centrality The influence of the node in the graph based on its 

degree centrality and the degree centrality of its 

neighbours, and their neighbours, etc. 

Betweeness Centrality A measure corresponding to the number of shortest 

paths a node belongs to. 

Closeness Centrality A measure of how close a node is to every other 

node based on the shortest paths between them. 

Table 2. A list of the graph connectivity measures used in this research. 

Graph Connectivity Metrics 
We use graphs to represent game levels as a collection of areas (nodes), possibly where 

game events occur, connected by paths (edges) which lead to new areas. Graph-

connectivity metrics can then be used to estimate how likely it is an area will be visited 

by the player and how isolated the area is. The metrics we focus on are node centrality 

measures including, degree, eigenvector, betweeness, and closeness. Degree centrality for 

a particular node is defined as the number of nodes that node is connected to. As such, 

this corresponds to the number of areas that are accessible from a particular area. 

Eigenvector centrality is a measure of how important a node is based on how many nodes 

it is connected to and how important they are. Betweeness centrality is a measure of how 

much traffic a node is expected to receive in relation to each other node. Closeness 

centrality is a measure of how close a node is to every other node. These metrics are also 

listed in Table 1. Descriptions of these measures and how they are calculated can be 

found in Networks: An Introduction (Newman, 2010). 
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EXPERIMENTS AND RESULTS 
Our research attempted to discover a collection of metrics that can be used to accurately 

classify an area type. To do this, a series of isovist metrics, commonly used in spatial 

analysis, were explored as they can capture spatial qualities of desired area types. Well 

known graph connectivity metrics were also explored, as graphs can represent the 

environment as a set of connected areas, not unlike a game level. This allows for 

identification of areas that are, for example, situated on commonly traversed paths or on 

paths that receives little traffic. 

In order to discover how useful our metrics are at classifying area types we performed 

two types of analysis: attribute evaluation, and classification. Attribute evaluation 

involved using an algorithm to discover which of the attributes were most useful in 

classifying area types, while the classification analysis involved running a dataset through 

three types of classifiers to determine the accuracy of classification using our set of 

metrics. The rest of this section describes how our dataset was generated (“Generating the 

Dataset”), the results from attribute evaluation (“Analysis of Attribute Evaluation”), and 

the results from the classification analysis (“Analysis of Classification Results”). 

Generating the Dataset 
Our data set consisted of 70 area instances, identified from a set of publically available 

terrain maps for the video game “Savage: The Battle for Newerth” (2003). Each instance 

contained values for 17 attributes. The first attribute was the type of area assigned to the 

instance, while the other sixteen attributes were the isovist and graph connectivity metrics 

displayed in Table 1 and Table 2. The following steps give an overview of the process 

used to generate our dataset. 

1. Find existing game levels which contain the desired area types. 

2. Generate a graph for the game level, with nodes for each area and edges for each 

path. 

3. Extract isovist and graph measures from the desired area types in the game levels. 

Step 1 involved gathering existing “Savage” maps which contained the area types we 

used in this research, which are listed in Table 3. During step 2, a graph was generated, 

which captured the physical layout and connectivity of the game level, as shown in 

Figure 2. A node was added to the graph for each area of the game level (a cross-section 

of paths or dead-end of a path) and an edge was added between nodes whose 

corresponding areas were connected by a physically traversable path. In step 3, an isovist 

was generated for each area type manually identified in the selected map. Each isovist 

was placed 50 units above ground level as 50 units was designated to be the eye height of 

a game character. Attribute values were then extracted from the area’s graph node and 

isovist to fill an instance of the dataset. 
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Figure 2. A screen shot of a player made level for the video game "Savage: The Battle 

for Newerth". The green spheres and lines show the physical layout of the level. The 

spheres circled in red were designated “vantage points”, while the spheres circled in 

yellow were designated “Strongholds”. 

The process of selecting areas from existing levels and manually determining their area 

type, like most manual processes, is a subjective process. To make this process less 

subjective, areas were manually classified by comparing their physical attributes with the 

descriptions presented in Hullett & Whitehead (2010). As an example, Hullett & 

Whitehead’s description of a “Sniper Location”, which we label a “Vantage Point” as it is 

less genre specific, states that it is 1) an elevated position, and 2) overlooks a portion of 

the level. Figure 3 shows an example of an area which was manually classified as a 

vantage point.  From this figure it can be seen that the vantage point is elevated and 

overlooks a large stretch of the game level. Therefore this area met the criteria of a 

vantage point. 
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Figure 3. An area manually identified as a vantage point with a screenshot of the players 

vision from that location. 

Due to some area types being more common than others the number of instances for each 

area type is not even, but a minimum of ten instances for each type was obtained. The 

different area types and, their number of instances, are listed in Table 3. 
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Area Type Number of Instances 

Hidden Area 11 

Open Area 15 

Vantage Point 19 

Choke Point 15 

Stronghold 10 

Table 3. A list of the area types, used in this research, and their number of instances in 

the dataset. 

Analysis of Attribute Evaluation 
The dataset is run through an attribute evaluator to determine which attributes are most 

influential in the classification process. We use the tool “Weka” (2015), a collection of 

machine learning algorithms written in Java, to perform attribute evaluation. The attribute 

evaluation process in Weka requires an attribute evaluation method and search method to 

be selected. For these tests we selected the InfoGain attribute evaluator and the Ranker 

search method. After Weka processed the dataset it output the list of attributes in order of 

the most useful to least useful. For each attribute Weka also output an InfoGain factor, a 

value based on the entropy between the attribute and each area type, to show which 

attributes have a greater probability of accurately classifying the area type. These results 

are displayed in Table 4. 

InfoGain Factor Attribute 

1.144 Area Size 

0.918 Degree Centrality 

0.750 Isovist Sphericality 

0.692 Eigenvector Centrality  

0.692 Isovist Dispersion 

0.626 Betweeness Centrality 

0.455 Isovist Skewness 

0.407 Isovist Volume 

0.403 Isovist Average Radial Length 

0.403 Closeness Centrality 

0.379 Isovist Drift 3D 

0.375 Isovist Standard Deviation 

0.375 Isovist Variance 

0.322 Isovist Drift 2D 

0 Isovist Maximum Radial Length 

0 Isovist Minimum Radial Length  

Table 4. An ordered list of attributes used in the classification of area types. The list is 

ordered from most influential attributes to the least influential, as denoted by their 

InfoGain factor. 

Table 4 shows that the most influential attribute is the area size, this was expected to be 

an important attribute as one of the most common descriptors of an area type is its size. 

The isovist volume was expected to have a high influence since it indicates how much 

visibility the area has, which is a key descriptor of some area types, but this attribute was 

ranked eighth. The minimum and maximum isovist radial lengths were ranked last with 

an InfoGain factor of 0. This was expected as every area in the data set has an equal value 

for both of these attributes, with the minimum value being the distance of the radials 

facing directly down (since each isovist was a set distance above ground level), and the 
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maximum distance being radials facing directly up, which all reach maximum view 

distance. Although these metrics were not useful in our experiments, it is important to list 

them here as they may play a more definitive role in different environments, such as 

indoor game levels. 

Analysis of Classification Results 
This section displays the results from running the dataset through three types classifiers, 

chosen to determine if one type of classifier out-performed others (e.g. perhaps decision 

trees perform better than black-box AI for this task). These results were obtained by using 

Weka to generate each classifier using the data set and observing how accurately each 

one classified area types. The three classifiers included the J48 decision tree, the Naïve 

Bayes classifier, and a multilayer perceptron. 

J48 Decision Tree 
In Weka, J48 is a method of generating C4.5 decision tree. The generated tree can either 

be pruned or unpruned but was pruned in this experiment. Since the dataset was not large 

enough to separate into a training set and test set, 10 fold cross validation was used to 

obtain a better prediction of classifier accuracy. Weka offers a number of adjustable 

parameters when generating the J48 classifier, but this research just used the standard, 

default settings. A summary of the results are displayed in Table 5, and the confusion 

matrix is shown in Table 6. 

Correctly Classified Instances 58 82.8571% 

Incorrectly Classified Instances 12 17.1429% 

Kappa Statistic 0.7832  

Mean Absolute Error 0.0759  

Root Mean Absolute Squared Error 0.2566  

Relative Absolute Error 23.962%  

Root Relative Squared Error 64.4569%  

Total Number of Instances 70  

Table 5. A summary of the results from running the dataset through Weka's J48 decision 

tree classifier. 

Hidden 

Area 

Open 

Area 

Vantage 

Point 

Choke 

Point 

Stronghold <-Classified As 

9 0 1 0 1 Hidden Area 

0 13 0 0 2 Open Area 

1 0 16 1 1 Vantage Point 

0 1 2 12 0 Choke Point 

0 2 0 0 8 Stronghold 

Table 6. The confusion matrix generated from running the dataset through Weka's J48 

decision tree classifier. 

This classifier worked well with a predicted accuracy of 82.8571%. The confusion matrix 

shows how many areas of each type were correctly and incorrectly classified. The results 

show that 12 out of 70 instances were misclassified. This was not unexpected as one area 

type may have many similar properties to areas of differing types. 
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Naïve Bayes 
Naïve Bayes is a common probabilistic classifier. As with J48, 10 fold cross validation 

was used when running the Naïve Bayes classifier with Weka’s default settings. The 

summary of results is shown in Table 7 and the confusion matrix is shown in Table 8. 

Correctly Classified Instances 60 85.7143% 

Incorrectly Classified Instances 10 14.2857% 

Kappa Statistic 0.8194  

Mean Absolute Error 0.0633  

Root Mean Absolute Squared Error 0.2406  

Relative Absolute Error 19.9891%  

Root Relative Squared Error 60.4479%  

Total Number of Instances 70  
Table 7. A summary of the results from running the dataset through Weka's Naïve Bayes 

probabilistic classifier. 

Hidden 

Area 

Open 

Area 

Vantage 

Point 

Choke 

Point 

Stronghold <-Classified As 

10 0 1 0 0 Hidden Area 

0 13 0 0 2 Open Area 

2 0 16 1 0 Vantage Point 

0 1 0 14 0 Choke Point 

0 3 0 0 7 Stronghold 

Table 8. The confusion matrix generated from running the dataset through Weka's Naïve 

Bayes probabilistic classifier. 

This classifier output a slightly higher accuracy than J48, achieving 85.7143% accuracy, 

correctly classifying 60 out of the 70 instances. 

Multilayer Perceptron 
The multilayer perceptron is an artificial neural network (ANN) which uses back 

propagation to identify instances. The ANN used in this research contained 16 input 

nodes (one for each attribute), a single hidden layer of 10 nodes, and four output nodes 

(one for each area type). As with the previous two classifiers, 10 fold cross validation and 

the Weka default settings were used. The summary of the results are shown in Table 9 

and the confusion matrix is shown in Table 10.  

Correctly Classified Instances 58 82.8571% 

Incorrectly Classified Instances 12 17.1429% 

Kappa Statistic 0.7832  

Mean Absolute Error 0.0759  

Root Mean Absolute Squared Error 0.2566  

Relative Absolute Error 23.962%  

Root Relative Squared Error 64.4569%  

Total Number of Instances 70  

Table 9. A summary of the results from running the dataset through Weka's Multilayer 

Perceptron ANN classifier. 
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Hidden 

Area 

Open 

Area 

Vantage 

Point 

Choke 

Point 

Stronghold <-Classified As 

10 0 1 0 0 Hidden Area 

0 11 0 0 4 Open Area 

1 0 17 1 0 Vantage Point 

1 0 2 12 0 Choke Point 

0 2 0 0 8 Stronghold 

Table 10. The confusion matrix generated from running the dataset through Weka's 

Multilayer Perceptron ANN classifier. 

The ANN had equal accuracy to the J48 decision tree classifier, achieving a predicted 

accuracy of 82.8571%. This classifier performed similarly to the previous two classifiers. 

One notable pattern among the results is that Open Areas, although classified correctly on 

most accounts, were only ever mistaken as strongholds and vice versa. This was not 

unexpected as Open Areas and Strongholds are similar areas and some may even be 

suitable as either. 

CONCLUSION 
In this paper we have investigated the impact of a set of graph-based metrics and isovist 

metrics to differentiate between terrain area types that are commonly found in video 

games. Experiments resulted in a ranking of the metrics by information gain, and when 

the metrics were used to train a set classifiers, the resulting accuracy, using 10-fold cross-

validation, ranged between 82-85%, depending on the type of classifier used. This shows 

that these metrics can be used to differentiate between the area types explored in this 

research, which is an indication of their effectiveness at capturing important area defining 

qualities in general. 

Future work may include the use of a larger data set so that both a training and test set 

may be used. Another possible area of exploration includes the use of an abstaining 

classifier, which can abstain from classifying an area if it is not similar to any of the 

known area types. 
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