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Figure 1: A semantic node-based graph featuring the combination of high-level architectural concepts. This representation maps to 
shape grammars, which in turn generate the displayed models. These two share almost the same graph specification with only slight 
differences (highlighted nodes and edges). The ‘Porch’ node exists only in the graph of model A, while the ‘Stairs’ only in that of B. 
Additional local variations are achieved through filters on the edges, e.g. causing every other window to be opened, and the 
locations of the chimney and entrance door to be changed on the façade.  

 
ABSTRACT  
Mass content creation is nowadays one of the most important 
challenges for game artists. This paper presents a high-level 
architectural modeling solution that combines the full generative 
power of shape grammars with the ease of use and flexibility of a 
node-based visual language. Our approach comprises a shape data 
flow character and introduces some novel features, including 
recursion, parametric flow, and flow filtering. The main 
development model consists of encapsulating basic operations 
into semantically-rich, reusable components that can be more 
easily assembled using filters. Eventually, this enables users to 
concentrate on the more intuitive and interactive development 
layers, while the text-based grammar rules are automatically 
generated. 

Categories and Subject Descriptors 
I.3.5 [Computer Graphics]: Computational Geometry and Object 
Modeling—Modeling packages; F.4.2 [Mathematical Logic and 
Formal Languages]: Grammars and Other Rewriting Systems—

Grammar types (e.g., context-free, context-sensitive);  

General Terms 
Design, Languages  

Keywords 
shape grammars, node-based design, semantics 

1. INTRODUCTION 
The use of procedural methods in digital games is becoming an 

increasingly attractive solution for the mass generation of three-
dimensional content [1]. Shape grammars are a popular example 
of procedural modeling effectiveness in the scope of architectural 
modeling. Using production rules, one can specify a set of 
geometric replacement processes that progressively increase the 
detail of a geometric shape, from a basic to a more complex form. 
This grammar specification can be parameterized and enriched 
with stochastic techniques, so that it can be used to produce a 
large variety of designs. When building extensive virtual urban 
environments, manual approaches tend to be too time-consuming 
and expensive. Shape grammars, on the other hand, are ideal to 
handle such extensive, but mostly pattern-repetitive nature.  

However, one of the greatest features of shape grammars is also 
one of their greatest inconveniences: the procedural description of 
a model is usually done in textual form, as in a sequence of 
programming instructions, rather than with explicit geometry. 
This makes it not only unattractive, but also very hard to grasp 

 



and manipulate by artists without a programming or scripting 
background.  

The most common difficulty derives from its decomposition 
into rules, which makes the procedural process flow hard to 
understand, maintain and edit. Rules refer to other rules through 
their named symbols, typically related to the underlying process 
or entity. Still, not always can rules be named after something 
semantically relevant, making rule symbols harder to manage and 
to understand by other users. Ideally, one would rather build, 
reuse and share shape grammar snippets, yet integrating them 
requires proper rule symbol association and the resolution of 
name clashes if no namespace solutions exist. 

Parameter passing can become an additional burden, further 
complicating rule management. Within a rule body, geometric 
operations are handled with a set of overloaded functions, whose 
syntax, working and usage is hardly intuitive. Finally, testing and 
debugging a grammar is also challenging, given its hard control 
over the sequence of operations scattered throughout the 
complicated rule chaining.  

In recent years, various content creation approaches have 
adopted visual node-based paradigms. With that in mind, we 
introduce a node-based visual approach to provide a more 
intuitive interface for shape grammar generation processes, 
extending graph design concepts from previous works [2–4]. With 
the same goal, we address the mentioned shape grammar issues by 
introducing the following contributions: 

• We introduce a comprehensive node-based representation 
for state-of-the-art shape grammar rules that combines the 
attribute data flow with the shape data flow within cyclic 
graphs, thereby enabling 3D artists to easily understand and 
edit complex rule sets. 

• For the intuitive authoring of procedural models, we 
propose a novel visual editing approach that focuses on the 
encapsulation of shape grammar snippets into reusable, 
semantically-rich components that can later be easily 
combined through flow filters and constraints.  

This paper is structured as follows: after reviewing some related 
work, Section 3 will introduce our visual node-based 
representation of shape grammars. Section 4 will describe the 
editing mechanics for that representation, while the Section 5 will 
refer to our implementation, together with some results. Lastly, 
the conclusions and some future work will be discussed. 

2. RELATED WORK 
The application of shape grammars as a formal approach to 

architectural design has been first brought up by Stiny and Gips 
[5], [6]. Building on that concept, Wonka et al. introduced split 
grammars [7], a new type of parametric set grammar, supported 
by an attribute matching system steered by a control grammar, 
offering the flexibility required to model buildings with many 
different styles. Based on this work, Müller et al. developed the 
CGA Shape [8], a shape grammar which procedurally generates 
variations of a model starting from volumetric shapes,  and  
proceeding to the generation of detail consistent with the mass 
model. The implementation of the CGA Shape is now integrated 
in the commercial system CityEngine [9]. As a generalization of 
previous shape object definitions, Krecklau et al. [10] introduced 
abstract structure templates to support the use of multiple types of 
non-terminal symbols with domain-specific operators and 
attributes. By using Python as a language base, they were able to 
apply their modeling language G2 to architectural as well as plant 

modeling, having expanded it later for the modeling of 
interconnected structures, such as bridges [11]. 

The main drawback of these methods lies on their textual, rule-
based nature: they allow only indirect control over the final model 
by editing the underlying text-based grammar, or global control 
by changing some parameters. An attractive approach to solve this 
problem consists of using a visual editor as a front-end to 
automatically generate grammar production rules. Lipp [3] 
presented a visual editing system which introduced traditional 
modeling techniques, allowing a more intuitive and powerful 
control over each grammar aspect. However, they still relied on a 
rule structure design for editing and execution. Also, despite 
having introduced instance locators for custom control, the 
approach is not flexible enough to introduce new types of 
semantic selectors. Krecklau et al. [4] presented 3D manipulators 
in order to create a visual representation of editable parameters 
directly in model space, revealing the influence of a parameter. 
They also introduced two edition modes: a Professional mode, to 
create and configure encapsulated modules (called high-level 
primitives) and a High-Level mode, where these can be combined 
and customized using an interactive modeling interface. A 
limitation, though, is that the P-Mode requires manual editing of a 
textual-based grammar. 

Visual programming languages allow the manipulation of 
program elements graphically rather than textually. Some of its 
variants represent nodes as operations and edges as conductors of 
data tokens. Following this paradigm, visual node-based editors 
have become a standard for a variety of purposes and systems, 
including material editors (e.g. Autodesk Maya [12]), texture 
editors (Allegorithmic Substance Designer [13]) script editors 
(e.g. Autodesk Softimage [14]) and model animation editors 
(SideFX Houdini [15]).  The work of Patow [2] presented a 
dataflow adaptation for shape grammars using directed acyclic 
graphs (DAGs), bridging the disassociation between rules. 
Despite its advantageous possibility of model verification and 
graph rewriting, the acyclic approach precludes the use of 
recursion. The paper also mentions the ability to create 
components, but provides little detail on how the operation nodes 
are handled or on how the parametric flow can be controlled. 

3. NODE-BASED REPRESENTATION 
In this section we will describe how the shape grammar 

definition is represented by a visual, node-based workflow, 
affecting the way that the shapes and their associated attributes 
and parameters are controlled throughout the graph. We also 
discuss how the operations are mapped to nodes and how their 
various configurations can be achieved.  

Shape grammar-based procedural methods, such as the ones 
presented in [7], [8], [10], describe a scene or model as a set of 
production rules. These follow the form  

Predecessor → Successor 

where the predecessor is a non-terminal symbol to be replaced 
successively by a set of other non-terminal or terminal symbols 
(the successor of the rule). The nature of manipulated symbols per 
method, from geometric constructs  enclosing a local cuboid 
scope to more complex class instances [10]. In short, these 
approaches perform the successive creation or transformation of 
geometry by means of operations. Rules are chained by matching 
non-terminal symbols mentioned in the successor of one rule to 
that symbol in the predecessor of another rule. Rules may accept 
parameters and be restricted to the evaluation of a logical 
expression in order for the rule to be applied.  



For exemplification, the used grammar notation throughout this 
paper loosely follows the one presented by Müller et al. [8] and 
CityEngine [9], but could be easily adapted for other shape 
grammar derivations as well. The adaptation of these concepts to a 
visual paradigm will be explained in the following subsections. 

3.1 Graph Structure 
In our visual representation, the procedural model is a directed 

cyclic graph G(V,E), where the nodes V represent the modeling 
process and the edges E describe the data flow from one node to 
the next. Connections are established between input and output 
ports that, being anchored to nodes, characterize the process 
interface. The easy linking and unlinking of nodes provides a 
more flexible chaining of processes than the standard textual rule 
paradigm. 

We distinguish several types of graph nodes, each describing 
either flow-operational essentials or geometric operations. Their 
type is identified by both shape and color. Shape defines node 
class and characterizes its general behavior within the graph, 
while the color is used for differentiating existing categories 
within a class (see Figure 2). 

 

Figure 2: Available node classes 

Here, we identify the following classes: 

• Input Node: the starting point of every graph. As such, it is 
the location where global graph properties can be defined, 
such as starting shape, tags or other metadata. Input nodes 
have no input ports and only one output port. Each graph 
must have exactly one and only one input node. 

• Operation Node: the most common node, featuring multiple 
categories, according to the type of performed operation, such 
as geometry manipulation, coloring or texturing. Each type of 
operation features its own distinct node configuration 
possibilities. Operation nodes have only one input node and 
one output node, meaning that they take one single shape as 
input at a time, perform some kind of transformation on it and 
then return also a single shape. 

• Diverge Node: takes one single shape as input, but, contrary 
to the operation node, can output multiple ones. Functionally, 
it performs a transformation, selection or partition, resulting in 
various shapes, which can be handled in different ways. These 
nodes have one input port and at least one output port. Shape 
splits are examples of operations fitting this class. 

• Value Read/Write Node: takes one single shape as input at a 
time. Reads or writes some attribute data associated to it and 
then forwards the shape to the output port. 

• Output Node: defines a data stream exit. The use of output 
nodes is optional, serving mainly as a means to label and 
identify the resulting leaf shapes (see section 3.5). 

• Component Node: encapsulates a full graph as a single 
complex operation. Components are discussed in more detail 
in section 3.5. 

3.2 Geometric Data Flow 
Nodes are handlers of shape data: in general, nodes receive 

shapes as input, perform a transformation, analysis or filter and 
output one or more resulting shapes. Two nodes can be connected 
by drawing an edge from an output port of one node to the input 
port of the other (see Figure 3a). When several nodes are chained 
through this approach, a shape data flow is defined. For each 
resulting shape, we can trace back the sequence of nodes and 
ports that led to its creation. This is called the development path 
of a shape.  

 

Figure 3: Examples of visual graphs and their translation to 
shape grammar rules. 

Each node can have only one input port, but accepts multiple 
incoming edges, allowing the reuse of a development path (path 
convergence – see Figure 3b). On the other hand, some nodes may 
contain multiple output ports, as a means to allow the separation 
of development paths (path divergence – see Figure 3b). Also, 
output ports can also be the source of multiple outgoing edges, 
each producing a shape copy (see Figure 3c). 

Sometimes, one may need to subject a shape to the same 
procedural paths more than once, following a recursive scheme. It 
is therefore possible to create cycles within the graph, connecting 



an output port of a child node to the input port of a parent node 
(see Figure 4). Naturally, such recursive paths must provide at 
least one possible exit condition so as to avoid infinite loops. 
Such cases can be easily found and avoided using graph-
transversal algorithms.  

 
Figure 4 - Recursive example for creating a stacked pile of 
wooden logs.  

3.3 Parametric Data Flow 
In addition to the geometric data flow, our visual paradigm 

represents as well the parametric data flow across the graph nodes, 
which is fundamental to steer the generation processes. In textual 
shape grammars, this has been achieved either through attribute 
declarations, which exist on a global scope, or through parameter 
passing from one rule to the next rule. While this difference is 
obvious and necessary for programmers, it is not always easy to 
grasp by designers with little programming background. With this 
in mind, the two concepts have here been merged into a simple 
global attribute manipulation. 

 

Figure 5: Parametric flow: for each shape, the StepIndex 
variable is updated in the split node and used afterwards to 
create the sized step, colored with a gray shade.  

In our visual representation, global attributes are defined right 
on the input node, which, being the starting point in every graph, 
makes them accessible to all following nodes. Attributes can be 
read and written anywhere in the course of a development path, 
yet this change is only propagated to its descendant shapes (i.e. 
each shape has its own copy of the attributes, which is passed on 
to derived shapes). This procedure follows the functional 
programming paradigm (where the function arguments are always 
passed by value) but without requiring an explicit declaration. 

Attribute data can be explicitly changed through specific nodes, 
e.g. a node that explicitly assigns a new value. In addition, some 
nodes can provide useful data related to the performed operation 
(e.g. in a split, the total number and the index of each resulting 
shape). This data may be used by assigning it to a global attribute, 
a process which is called data forwarding (see Figure 5). When 
shapes “flow” through such nodes, new data is assigned, 
prevailing throughout the rest of the development path, unless it is 
expressly changed again. Doing so reduces the need to deal with 
local attributes or explicit references to nodes. 

3.4 Node Configuration 
Nodes perform the actual shape operations. In textual 

grammars, this is achieved by using functions and their 
arguments. Since each operation may work in different ways, 
functions may be overloaded, allowing for multiple combinations 
of arguments. Getting to know and use such overloads, however, 
constitutes another difficulty, especially for those with less 
programming background. In order to address this, our visual 
representation uses the concept of node properties: strongly-typed 
fields, which can be explicitly changed, but that assume certain 
values by default. This has become a rather common approach in 
visual applications, due to its intuitiveness and ease of use. 
Properties may be deactivated or grouped into distinct property 
sets, called node styles. For instance, an operation for roof 
creation may incorporate various types of parameters, depending 
on the type of roof, justifying the definition of styles such as 
“shed”, “hip”, “gable”, etc.  Properties are usually assigned fixed 
values, but support mathematical expressions and function calls 
that operate on basic parametric data as well as global attributes 
(see Figure 5).  

In addition to their own properties, some nodes may incorporate 
an enumeration of configurable elements, here generically called 
parts. In a split operation node, for example, a part would 
correspond to a slice, whose size can be configured. In a 
conditional check node, a part would correspond to a single 
condition in a case-else control structure. In some cases, the part 
creation is linked to a port creation, since each part leads to a 
distinct development path. 

3.5 Encapsulating Graphs into Components  
Once assembled, full graphs can be encapsulated into 

components to be used as nodes in other graphs. The input node 
and output nodes of the source graph are mapped to the input and 
output ports of the component node, respectively, defining its 
interface (see Figure 6). Graph attributes of the component 
become its configurable properties, while certain selected 
attributes become data forwarding fields. In short, a component 
becomes another operation that provides a more elaborate 
procedure. 

Output nodes are especially important to identify shapes meant 
to be further derived. If no output nodes are defined, the resulting 
shapes coming from empty output ports (ports without outgoing 
edges) will still be present in the final model, but simply assigned 
an “All” symbol, and cannot be distinguished. 



 

Figure 6: Mapping of a graph to a component node 

Creating components consists of encapsulating shape grammar 
snippets. When they are imported to new graphs, an important 
step consists of merging their rules, connecting the intended 
grammar rules while avoiding name clashes. For that reason, 
imported components must be given a unique id within the 
containing graph, in order to create a namespace and overcome 
such conflicts. 

After being conceived and employed as a component, its 
underlying graph may again be subject of change. This fact 
introduces a management difficulty, since greater changes on an 
interface level may affect the node’s connectivity. On the other 
hand, changes may have unexpected effects in already finalized 
models. To help addressing these issues, we have devised two 
import methods:  
• Import by Copy : The underlying grammar logic of the 

component node is copied to the graph. Subsequent changes 
on the original component graph are not refreshed. This mode 
is ideal to avoid unexpected changes on the underlying model. 

• Import by Reference: A reference to the original graph is 
kept, and the component node is refactored whenever 
underlying changes occur, possibly breaking connectivity 
within the new graph, if the interface is changed. 

4. VISUAL SEMANTIC EDITING 
We introduce a new editing methodology consisting of the 

combination of semantically-rich component nodes. After 
introducing the concept of filters, we provide insight on how they 
can be used to enhance component nodes. Finally, we explain 
how they can be used to create building models using a 
vocabulary that is more familiar to designers. 

4.1 Flow Filters 
The graph-based approach is based on the paradigm shape and 

parametric data flow. For this, we introduce filters, which are flow 
control elements that block certain shapes while letting others 
through. Filters perform based on the features of the passing 
shapes, which are simply called shape properties SP. They may 
refer not only to their directly contained attributes, but also to the 
result of an expression or function on the shape. A filter consists 
of a combination of logical statements, called criteria CR, joined 
using conjunctive (“and”) and disjunctive (“or”) logical operators. 
When the criteria hold, the filter decides positively upon the shape 
flow and negatively otherwise. Each criterion consists of a check 
on a shape property, through a specific operator or function, 
hereby called the check function CF. 

 

A criterion can be formally described as: 
 

CR = CF (SP, CP1, CP2…CPn) 
 

where CPn refers to the parameters of the check function. 

Examples of criteria would be: 

scope.tx > 3.5 (1) 

isInRange(height, 20,50) (2) 

getFacingDirection() == “North” (3) 

isConcave() (4) 

The elements stressed in bold in the above conditions are the 
shape properties, which are read from the shape, at the time of the 
criteria verification. Properties are verified through either 
functions (2) or operators (1,3) that take further criterion 
parameters. If the property is itself a Boolean (4), no check 
function is required.  

One of the most fundamental features behind the construction 
of these criteria is the decoupled composition of their members: 
Shape Property, Check Function and Criterion Parameters. Each 
of these can encompass a virtually unlimited amount of variants, 
which are meant to be easily extensible by the programmer, the 
user or the system itself. 

4.2 Designing Semantic Components 
While components can be used to simply encapsulate small 

routines without specific meaning, they can also be used to build 
architecturally significant elements, such as building parts, façade 
styles or windows. The way these elements are meant to be 
combined, however, does follow certain architectural design 
standards. Embedding component nodes with information about 
their meaning, usage and typical restrictions can contribute to the 
creation of a high-level vocabulary for the design of building 
models. 

Semantic information is present in components first of all in 
their external interface, comprising the expected kind of input 
shape, the returned output shapes and the global attributes. The 
type of expected input shapes is defined in the input node. 
Likewise, output nodes identify the type of shapes that the graph 
produces. Global attributes are, as mentioned, defined within the 
input node and can be marked for data forwarding. For each of 
these elements, using appropriate nomenclature is essential to 
guarantee proper understanding and use of the component. 

Figure 7 shows a basic component that splits a façade into a 
grid, providing X and Y index information as data forwarding 
attributes of the resulting tiles. 

 

Figure 7: Component Creation and Configuration 



Data flow on a graph can also be configured with input 
constrains, which are flow filters that impose restrictions on the 
input shapes. Examples of useful constraint types on actual 
component instances include: 

• Direction, e.g. to restrict windows from facing west; 

• Occlusion, e.g. to avoid placing a balcony on a façade 
occluded by other; 

• Number, e.g. to avoid building more than one main entry 
door; 

• Geometry, e.g. to ensure the construction of certain 
structures on planar or rectangular faces (see Figure 7); 

• Size, e.g. to avoid unrealistic constructions with 
mismatching proportions. 

Inputs, outputs and constraints help specify how components 
are intended to be used, but should not restrict it. For example, 
although in most cases windows are meant to be built on planar 
walls, it would not be wise to impose such a regulation, since it 
might need to be overridden e.g. on a fictional building or when 
addressing a more modern architectural style. Their application 
must therefore provide the necessary flexibility for the users to 
employ the components as they see fit. 

4.3 Semantic Flow Control 
We introduce a new graph creation paradigm for the 

combination of the presented semantic components into semantic 
graphs. Considering that each node and port has a certain 
architectural meaning, the whole graph is a connection of 
semantic concepts, instead of mere geometric operations. This 
way, even untrained users can read, understand and assemble such 
graphs without specific knowledge of shape grammars and 
geometric derivation. 

Semantic graph editing can be aided through flow filters to 
introduce restrictions on concept connections. Filters can be 
placed on the edges, thus establishing conditions on the shape 
flow. When two semantic components are connected, existing 
constraints of the destination node are integrated with the edge 
filter (see Figure 8). 

 

Figure 8: Flow filter on an edge, featuring several criteria. The 
first 3 criteria correspond to the constraints defined on the 
grid component (see Figure 6). 

The purpose of this filter approach is to provide a simple and 
straightforward method for introducing local changes. The work 
by Patow [2] presented a similar level of control using exception 
nodes. Our solution is more flexible and compact. 

Figure 9 shows a semantic graph and its corresponding model 
outcome: one component node creates the main building block, 
another builds a terrace on the top face and a last one creates a 
grid-like structure on the façades. From this last component, 4 

different window styles and 2 doors are introduced according to 
certain patterns.  

 

Figure 9: Semantic Assembly of components, featuring distinct 
applications of flow filters 

As mentioned before, filters are sets of conditional criteria, 
based on shape properties, such as direction, geometry, size, 
occlusion state, etc. It is possible to introduce new shape 
properties in the following ways: 

• By defining global attributes in the input node of the 
semantic graph; 

• By using components that feature data forwarding attributes. 

Using a database of check functions, it is possible to generate 
matching criteria. In the example above, all windows have been 
placed according to the (x,y) coordinates of the façade grid (see 
Figure 7), which was a shape property provided by the grid 
component itself. The generated criteria are listed in Figure 10. 

 

 

Figure 10: Criteria generation for grid coordinate properties. 

This level of control based on a grid structure is comparable to 
that of Lipp et al. [3] through semantic locators, which allow the 
control over individual columns, rows or particular coordinates. 
Our criteria play a similar role, but are more flexible, since they 
are generated from shape properties. This enhances the level of 
local control extensibility of this semantic assembling solution.  

5. IMPLEMENTATION AND RESULTS 
In order to test the applicability and usability of such a visual 

programming definition, we have developed an editor that follows 
the mentioned methodological approach to address the generative 
power of the CGA Shape Grammar [8]. This choice was 
motivated not only by the grammar’s popularity in the field, but 
also by the availability of the authoring tool CityEngine [9]. The 
editor has been implemented in Java using the Eclipse RCP, a rich 
client platform for general purpose applications. 



 
Figure 12: Construction of the porch component featured in Figure 1. The colored overlays indicate how each graph section 
contributes to the respective model states shown on the bottom. The corresponding CGA spans over 200 lines of grammar rules.  

 

5.1 Graphical User Interface 
The graphical user interface (GUI) is split into multiple 

dockable windows, as shown in Figure 11. 

 

Figure 11: Graphical user interface of the visual editor 

The graph editor area (see Figure 11, top) contains the 
necessary tools for the construction of graphs. Adding nodes to a 
graph is either achieved by dragging-and-dropping from a toolbar 
located on the top or through a mouse context menu. Connections 
between the nodes are built by drawing edges between ports.  

The Inspector pane (see Figure 11, right) provides information 
concerning the currently selected node or edge, as well as the 
necessary controls (e.g. sliders, textboxes) to alter its properties. 

Finally, the 3D Rendering view (see Figure 11, bottom) 
displays the geometry model of the current graph. Among the 
usual viewport rendering options, it allows the visualization of the 
shape scopes, pivots and bounding boxes, which are of extreme 
relevance to the modeling control, but often a source of frustration 
by many users.  

5.2 Editing Graphs 
Our graph design canvas allows the combination of CGA Shape 

operations. Node labels reflect the operation or component name 
by default, but can be renamed to improve readability without 
affecting the chaining of the underlying rule symbols. Input nodes 

allow the choice of the starting shape (e.g. horizontal and vertical 
rectangles, concave shapes, volumes), which is used to create the 
preview model in the 3D rendering area.  

To allow easy debugging, edges can be temporarily deactivated 
by the user, interrupting the data flow but without actually 
breaking existing graph connections. This option is extremely 
useful when a user wants to focus on a specific path, while 
temporarily hiding the remaining ones. Similarly, nodes can also 
be disabled, which is useful to understand the consequence of 
certain operations.  

We show in Figure 12 the stepwise creation of a porch 
component suitable to be applied on a façade shape. The graph 
features further component nodes that refer either to previously 
created subroutines (‘Texture’) or to more complex architectural 
elements (‘Stairs’, ‘Balustrade’). The various steps show the 
impact of each graph section, which was achieved through the 
addition of a small number of nodes and connections. In practice, 
this example corresponds to over 200 lines of CGA rules scattered 
among various files. In contrast, our representation clearly 
introduces far more readability, maintainability and usability than 
its textual counterpart. 

Figure 1 and 9 depict simpler semantic graphs created using our 
editor. The use of filters allows for a complete model overhaul 
with only a small number of changes and facilitates the creation of 
multiple building variations with very little effort.  

We introduced our visual editors to artists with a CGA Shape 
Grammar background. Their reaction was very positive: they were 
already familiar with the node-based paradigm for procedural 
design and appreciated its adaptation to the shape grammar 
specificities. They became especially interested in the possibility 
of creating semantic components. However, when assembling 
them, they pointed out that it was not always easy to choose the 
right filter on a first try and suggested using an interactive picking 
system that would find the filters based on the user selection on 
the model. 

5.3 Exporting and Importing CGA Shape 
Besides the obvious increase in user productivity, the automatic 

generation of the grammar rules from the node representation is 



beneficial in the sense that it can be tweaked in order to produce 
better structured and more optimized rules. The code generation 
process starts by building the header of the file and writing the 
global attributes defined in the input node. From there, the 
algorithm recursively analyzes the chaining of nodes, declaring 
new rules for each of the following cases: (i) if it is an input node; 
(ii) for each port of a divergence node; (iii) for each node port 
featuring shape copy; (iv) if the input port of a node has several 
incoming edges, i.e. for recursion and path convergence cases; (v) 
when referring and joining component nodes. If a node does not 
fit any of these cases, it is simply chained within the leading rule. 

Visual CGA files are stored in their own format and the CGA 
are created on demand. Older CGA files can be translated to this 
interactive paradigm, too. Importing requires a first parsing step to 
identify the rule symbols, attributes, parameters and operations. 
Afterwards, operations within rules are turned into nodes and the 
connections between them are extracted from rule references and 
from the operation sequencing within rules. Existing rule 
parameters are replaced with global attributes. By default, a single 
component is created from the CGA file, although it is also 
possible to create multiple components from selected subsets of 
rules. 

6. CONCLUSIONS AND FUTURE WORK 
We presented a visual node-based methodology to address the 

numerous shape grammar challenges that arise from its textual 
representation. On a representation level, we extended existing 
geometric flow approaches [2] with the possibility to define 
recursive procedures. We addressed the parameter handling with a 
simple concept of attribute data flow and demonstrated how 
function overloads can be mapped to node properties. On an 
editing level, we proposed an intuitive authoring technique that 
focuses on the encapsulation of grammar snippets into reusable 
components. When enhanced with semantic data, they provide a 
high level architectural vocabulary that can be combined using 
filters, yielding a much more flexible approach than the creation 
of semantic locators [3]. 

Future work will focus on further developing semantic graph 
manipulation and expressive power. Our current approach still 
requires users to search and edit filters directly, but this could be 
assisted through interactive techniques to find filters based on an 
explicit selection on the model. This is a first of many steps 
towards the integration of manual editing and procedural 
modeling techniques [16]. We believe that node-based systems 
are instrumental to harness the power of procedural modeling 
methods and that properly supporting both semantics and manual 
editing will be essential to bring those methods to mainstream 
content production workflow.  
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