
Node-Based Shape Grammar Representation and Editing
Pedro Brandão Silva

FEUP/INESC
ESRI R&D
TU Delft

pedro.brandao.silva@fe.up.pt

Pascal Müller
ESRI R&D

pascal.mueller@esri.com

Rafael Bidarra
TU Delft

r.bidarra@tudelft.nl

António Coelho
FEUP/INESC

acoelho@fe.up.pt

Figure 1: A semantic node-based graph featuring the combination of high-level architectural concepts. This representation maps to
shape grammars, which in turn generate the displayed models. These two share almost the same graph specification with only slight
differences (highlighted nodes and edges). The ‘Porch’ node exists only in the graph of model A, while the ‘Stairs’ only in that of B.
Additional local variations are achieved through filters on the edges, e.g. causing every other window to be opened, and the
locations of the chimney and entrance door to be changed on the façade.

ABSTRACT
Mass content creation is nowadays one of the most important
challenges for game artists. This paper presents a high-level
architectural modeling solution that combines the full generative
power of shape grammars with the ease of use and flexibility of a
node-based visual language. Our approach comprises a shape data
flow character and introduces some novel features, including
recursion, parametric flow, and flow filtering. The main
development model consists of encapsulating basic operations
into semantically-rich, reusable components that can be more
easily assembled using filters. Eventually, this enables users to
concentrate on the more intuitive and interactive development
layers, while the text-based grammar rules are automatically
generated.

Categories and Subject Descriptors
I.3.5 [Computer Graphics]: Computational Geometry and Object
Modeling—Modeling packages; F.4.2 [Mathematical Logic and
Formal Languages]: Grammars and Other Rewriting Systems—

Grammar types (e.g., context-free, context-sensitive);

General Terms
Design, Languages

Keywords
shape grammars, node-based design, semantics

1. INTRODUCTION
The use of procedural methods in digital games is becoming an

increasingly attractive solution for the mass generation of three-
dimensional content [1]. Shape grammars are a popular example
of procedural modeling effectiveness in the scope of architectural
modeling. Using production rules, one can specify a set of
geometric replacement processes that progressively increase the
detail of a geometric shape, from a basic to a more complex form.
This grammar specification can be parameterized and enriched
with stochastic techniques, so that it can be used to produce a
large variety of designs. When building extensive virtual urban
environments, manual approaches tend to be too time-consuming
and expensive. Shape grammars, on the other hand, are ideal to
handle such extensive, but mostly pattern-repetitive nature.

However, one of the greatest features of shape grammars is also
one of their greatest inconveniences: the procedural description of
a model is usually done in textual form, as in a sequence of
programming instructions, rather than with explicit geometry.
This makes it not only unattractive, but also very hard to grasp

and manipulate by artists without a programming or scripting
background.

The most common difficulty derives from its decomposition
into rules, which makes the procedural process flow hard to
understand, maintain and edit. Rules refer to other rules through
their named symbols, typically related to the underlying process
or entity. Still, not always can rules be named after something
semantically relevant, making rule symbols harder to manage and
to understand by other users. Ideally, one would rather build,
reuse and share shape grammar snippets, yet integrating them
requires proper rule symbol association and the resolution of
name clashes if no namespace solutions exist.

Parameter passing can become an additional burden, further
complicating rule management. Within a rule body, geometric
operations are handled with a set of overloaded functions, whose
syntax, working and usage is hardly intuitive. Finally, testing and
debugging a grammar is also challenging, given its hard control
over the sequence of operations scattered throughout the
complicated rule chaining.

In recent years, various content creation approaches have
adopted visual node-based paradigms. With that in mind, we
introduce a node-based visual approach to provide a more
intuitive interface for shape grammar generation processes,
extending graph design concepts from previous works [2–4]. With
the same goal, we address the mentioned shape grammar issues by
introducing the following contributions:

• We introduce a comprehensive node-based representation
for state-of-the-art shape grammar rules that combines the
attribute data flow with the shape data flow within cyclic
graphs, thereby enabling 3D artists to easily understand and
edit complex rule sets.

• For the intuitive authoring of procedural models, we
propose a novel visual editing approach that focuses on the
encapsulation of shape grammar snippets into reusable,
semantically-rich components that can later be easily
combined through flow filters and constraints.

This paper is structured as follows: after reviewing some related
work, Section 3 will introduce our visual node-based
representation of shape grammars. Section 4 will describe the
editing mechanics for that representation, while the Section 5 will
refer to our implementation, together with some results. Lastly,
the conclusions and some future work will be discussed.

2. RELATED WORK
The application of shape grammars as a formal approach to

architectural design has been first brought up by Stiny and Gips
[5], [6]. Building on that concept, Wonka et al. introduced split
grammars [7], a new type of parametric set grammar, supported
by an attribute matching system steered by a control grammar,
offering the flexibility required to model buildings with many
different styles. Based on this work, Müller et al. developed the
CGA Shape [8], a shape grammar which procedurally generates
variations of a model starting from volumetric shapes, and
proceeding to the generation of detail consistent with the mass
model. The implementation of the CGA Shape is now integrated
in the commercial system CityEngine [9]. As a generalization of
previous shape object definitions, Krecklau et al. [10] introduced
abstract structure templates to support the use of multiple types of
non-terminal symbols with domain-specific operators and
attributes. By using Python as a language base, they were able to
apply their modeling language G2 to architectural as well as plant

modeling, having expanded it later for the modeling of
interconnected structures, such as bridges [11].

The main drawback of these methods lies on their textual, rule-
based nature: they allow only indirect control over the final model
by editing the underlying text-based grammar, or global control
by changing some parameters. An attractive approach to solve this
problem consists of using a visual editor as a front-end to
automatically generate grammar production rules. Lipp [3]
presented a visual editing system which introduced traditional
modeling techniques, allowing a more intuitive and powerful
control over each grammar aspect. However, they still relied on a
rule structure design for editing and execution. Also, despite
having introduced instance locators for custom control, the
approach is not flexible enough to introduce new types of
semantic selectors. Krecklau et al. [4] presented 3D manipulators
in order to create a visual representation of editable parameters
directly in model space, revealing the influence of a parameter.
They also introduced two edition modes: a Professional mode, to
create and configure encapsulated modules (called high-level
primitives) and a High-Level mode, where these can be combined
and customized using an interactive modeling interface. A
limitation, though, is that the P-Mode requires manual editing of a
textual-based grammar.

Visual programming languages allow the manipulation of
program elements graphically rather than textually. Some of its
variants represent nodes as operations and edges as conductors of
data tokens. Following this paradigm, visual node-based editors
have become a standard for a variety of purposes and systems,
including material editors (e.g. Autodesk Maya [12]), texture
editors (Allegorithmic Substance Designer [13]) script editors
(e.g. Autodesk Softimage [14]) and model animation editors
(SideFX Houdini [15]). The work of Patow [2] presented a
dataflow adaptation for shape grammars using directed acyclic
graphs (DAGs), bridging the disassociation between rules.
Despite its advantageous possibility of model verification and
graph rewriting, the acyclic approach precludes the use of
recursion. The paper also mentions the ability to create
components, but provides little detail on how the operation nodes
are handled or on how the parametric flow can be controlled.

3. NODE-BASED REPRESENTATION
In this section we will describe how the shape grammar

definition is represented by a visual, node-based workflow,
affecting the way that the shapes and their associated attributes
and parameters are controlled throughout the graph. We also
discuss how the operations are mapped to nodes and how their
various configurations can be achieved.

Shape grammar-based procedural methods, such as the ones
presented in [7], [8], [10], describe a scene or model as a set of
production rules. These follow the form

Predecessor → Successor

where the predecessor is a non-terminal symbol to be replaced
successively by a set of other non-terminal or terminal symbols
(the successor of the rule). The nature of manipulated symbols per
method, from geometric constructs enclosing a local cuboid
scope to more complex class instances [10]. In short, these
approaches perform the successive creation or transformation of
geometry by means of operations. Rules are chained by matching
non-terminal symbols mentioned in the successor of one rule to
that symbol in the predecessor of another rule. Rules may accept
parameters and be restricted to the evaluation of a logical
expression in order for the rule to be applied.

For exemplification, the used grammar notation throughout this
paper loosely follows the one presented by Müller et al. [8] and
CityEngine [9], but could be easily adapted for other shape
grammar derivations as well. The adaptation of these concepts to a
visual paradigm will be explained in the following subsections.

3.1 Graph Structure
In our visual representation, the procedural model is a directed

cyclic graph G(V,E), where the nodes V represent the modeling
process and the edges E describe the data flow from one node to
the next. Connections are established between input and output
ports that, being anchored to nodes, characterize the process
interface. The easy linking and unlinking of nodes provides a
more flexible chaining of processes than the standard textual rule
paradigm.

We distinguish several types of graph nodes, each describing
either flow-operational essentials or geometric operations. Their
type is identified by both shape and color. Shape defines node
class and characterizes its general behavior within the graph,
while the color is used for differentiating existing categories
within a class (see Figure 2).

Figure 2: Available node classes

Here, we identify the following classes:

• Input Node: the starting point of every graph. As such, it is
the location where global graph properties can be defined,
such as starting shape, tags or other metadata. Input nodes
have no input ports and only one output port. Each graph
must have exactly one and only one input node.

• Operation Node: the most common node, featuring multiple
categories, according to the type of performed operation, such
as geometry manipulation, coloring or texturing. Each type of
operation features its own distinct node configuration
possibilities. Operation nodes have only one input node and
one output node, meaning that they take one single shape as
input at a time, perform some kind of transformation on it and
then return also a single shape.

• Diverge Node: takes one single shape as input, but, contrary
to the operation node, can output multiple ones. Functionally,
it performs a transformation, selection or partition, resulting in
various shapes, which can be handled in different ways. These
nodes have one input port and at least one output port. Shape
splits are examples of operations fitting this class.

• Value Read/Write Node: takes one single shape as input at a
time. Reads or writes some attribute data associated to it and
then forwards the shape to the output port.

• Output Node: defines a data stream exit. The use of output
nodes is optional, serving mainly as a means to label and
identify the resulting leaf shapes (see section 3.5).

• Component Node: encapsulates a full graph as a single
complex operation. Components are discussed in more detail
in section 3.5.

3.2 Geometric Data Flow
Nodes are handlers of shape data: in general, nodes receive

shapes as input, perform a transformation, analysis or filter and
output one or more resulting shapes. Two nodes can be connected
by drawing an edge from an output port of one node to the input
port of the other (see Figure 3a). When several nodes are chained
through this approach, a shape data flow is defined. For each
resulting shape, we can trace back the sequence of nodes and
ports that led to its creation. This is called the development path
of a shape.

Figure 3: Examples of visual graphs and their translation to
shape grammar rules.

Each node can have only one input port, but accepts multiple
incoming edges, allowing the reuse of a development path (path
convergence – see Figure 3b). On the other hand, some nodes may
contain multiple output ports, as a means to allow the separation
of development paths (path divergence – see Figure 3b). Also,
output ports can also be the source of multiple outgoing edges,
each producing a shape copy (see Figure 3c).

Sometimes, one may need to subject a shape to the same
procedural paths more than once, following a recursive scheme. It
is therefore possible to create cycles within the graph, connecting

an output port of a child node to the input port of a parent node
(see Figure 4). Naturally, such recursive paths must provide at
least one possible exit condition so as to avoid infinite loops.
Such cases can be easily found and avoided using graph-
transversal algorithms.

Figure 4 - Recursive example for creating a stacked pile of
wooden logs.

3.3 Parametric Data Flow
In addition to the geometric data flow, our visual paradigm

represents as well the parametric data flow across the graph nodes,
which is fundamental to steer the generation processes. In textual
shape grammars, this has been achieved either through attribute
declarations, which exist on a global scope, or through parameter
passing from one rule to the next rule. While this difference is
obvious and necessary for programmers, it is not always easy to
grasp by designers with little programming background. With this
in mind, the two concepts have here been merged into a simple
global attribute manipulation.

Figure 5: Parametric flow: for each shape, the StepIndex
variable is updated in the split node and used afterwards to
create the sized step, colored with a gray shade.

In our visual representation, global attributes are defined right
on the input node, which, being the starting point in every graph,
makes them accessible to all following nodes. Attributes can be
read and written anywhere in the course of a development path,
yet this change is only propagated to its descendant shapes (i.e.
each shape has its own copy of the attributes, which is passed on
to derived shapes). This procedure follows the functional
programming paradigm (where the function arguments are always
passed by value) but without requiring an explicit declaration.

Attribute data can be explicitly changed through specific nodes,
e.g. a node that explicitly assigns a new value. In addition, some
nodes can provide useful data related to the performed operation
(e.g. in a split, the total number and the index of each resulting
shape). This data may be used by assigning it to a global attribute,
a process which is called data forwarding (see Figure 5). When
shapes “flow” through such nodes, new data is assigned,
prevailing throughout the rest of the development path, unless it is
expressly changed again. Doing so reduces the need to deal with
local attributes or explicit references to nodes.

3.4 Node Configuration
Nodes perform the actual shape operations. In textual

grammars, this is achieved by using functions and their
arguments. Since each operation may work in different ways,
functions may be overloaded, allowing for multiple combinations
of arguments. Getting to know and use such overloads, however,
constitutes another difficulty, especially for those with less
programming background. In order to address this, our visual
representation uses the concept of node properties: strongly-typed
fields, which can be explicitly changed, but that assume certain
values by default. This has become a rather common approach in
visual applications, due to its intuitiveness and ease of use.
Properties may be deactivated or grouped into distinct property
sets, called node styles. For instance, an operation for roof
creation may incorporate various types of parameters, depending
on the type of roof, justifying the definition of styles such as
“shed”, “hip”, “gable”, etc. Properties are usually assigned fixed
values, but support mathematical expressions and function calls
that operate on basic parametric data as well as global attributes
(see Figure 5).

In addition to their own properties, some nodes may incorporate
an enumeration of configurable elements, here generically called
parts. In a split operation node, for example, a part would
correspond to a slice, whose size can be configured. In a
conditional check node, a part would correspond to a single
condition in a case-else control structure. In some cases, the part
creation is linked to a port creation, since each part leads to a
distinct development path.

3.5 Encapsulating Graphs into Components
Once assembled, full graphs can be encapsulated into

components to be used as nodes in other graphs. The input node
and output nodes of the source graph are mapped to the input and
output ports of the component node, respectively, defining its
interface (see Figure 6). Graph attributes of the component
become its configurable properties, while certain selected
attributes become data forwarding fields. In short, a component
becomes another operation that provides a more elaborate
procedure.

Output nodes are especially important to identify shapes meant
to be further derived. If no output nodes are defined, the resulting
shapes coming from empty output ports (ports without outgoing
edges) will still be present in the final model, but simply assigned
an “All” symbol, and cannot be distinguished.

Figure 6: Mapping of a graph to a component node

Creating components consists of encapsulating shape grammar
snippets. When they are imported to new graphs, an important
step consists of merging their rules, connecting the intended
grammar rules while avoiding name clashes. For that reason,
imported components must be given a unique id within the
containing graph, in order to create a namespace and overcome
such conflicts.

After being conceived and employed as a component, its
underlying graph may again be subject of change. This fact
introduces a management difficulty, since greater changes on an
interface level may affect the node’s connectivity. On the other
hand, changes may have unexpected effects in already finalized
models. To help addressing these issues, we have devised two
import methods:
• Import by Copy : The underlying grammar logic of the

component node is copied to the graph. Subsequent changes
on the original component graph are not refreshed. This mode
is ideal to avoid unexpected changes on the underlying model.

• Import by Reference: A reference to the original graph is
kept, and the component node is refactored whenever
underlying changes occur, possibly breaking connectivity
within the new graph, if the interface is changed.

4. VISUAL SEMANTIC EDITING
We introduce a new editing methodology consisting of the

combination of semantically-rich component nodes. After
introducing the concept of filters, we provide insight on how they
can be used to enhance component nodes. Finally, we explain
how they can be used to create building models using a
vocabulary that is more familiar to designers.

4.1 Flow Filters
The graph-based approach is based on the paradigm shape and

parametric data flow. For this, we introduce filters, which are flow
control elements that block certain shapes while letting others
through. Filters perform based on the features of the passing
shapes, which are simply called shape properties SP. They may
refer not only to their directly contained attributes, but also to the
result of an expression or function on the shape. A filter consists
of a combination of logical statements, called criteria CR, joined
using conjunctive (“and”) and disjunctive (“or”) logical operators.
When the criteria hold, the filter decides positively upon the shape
flow and negatively otherwise. Each criterion consists of a check
on a shape property, through a specific operator or function,
hereby called the check function CF.

A criterion can be formally described as:

CR = CF (SP, CP1, CP2…CPn)

where CPn refers to the parameters of the check function.

Examples of criteria would be:

scope.tx > 3.5 (1)

isInRange(height, 20,50) (2)

getFacingDirection() == “North” (3)

isConcave() (4)

The elements stressed in bold in the above conditions are the
shape properties, which are read from the shape, at the time of the
criteria verification. Properties are verified through either
functions (2) or operators (1,3) that take further criterion
parameters. If the property is itself a Boolean (4), no check
function is required.

One of the most fundamental features behind the construction
of these criteria is the decoupled composition of their members:
Shape Property, Check Function and Criterion Parameters. Each
of these can encompass a virtually unlimited amount of variants,
which are meant to be easily extensible by the programmer, the
user or the system itself.

4.2 Designing Semantic Components
While components can be used to simply encapsulate small

routines without specific meaning, they can also be used to build
architecturally significant elements, such as building parts, façade
styles or windows. The way these elements are meant to be
combined, however, does follow certain architectural design
standards. Embedding component nodes with information about
their meaning, usage and typical restrictions can contribute to the
creation of a high-level vocabulary for the design of building
models.

Semantic information is present in components first of all in
their external interface, comprising the expected kind of input
shape, the returned output shapes and the global attributes. The
type of expected input shapes is defined in the input node.
Likewise, output nodes identify the type of shapes that the graph
produces. Global attributes are, as mentioned, defined within the
input node and can be marked for data forwarding. For each of
these elements, using appropriate nomenclature is essential to
guarantee proper understanding and use of the component.

Figure 7 shows a basic component that splits a façade into a
grid, providing X and Y index information as data forwarding
attributes of the resulting tiles.

Figure 7: Component Creation and Configuration

Data flow on a graph can also be configured with input
constrains, which are flow filters that impose restrictions on the
input shapes. Examples of useful constraint types on actual
component instances include:

• Direction, e.g. to restrict windows from facing west;

• Occlusion, e.g. to avoid placing a balcony on a façade
occluded by other;

• Number, e.g. to avoid building more than one main entry
door;

• Geometry, e.g. to ensure the construction of certain
structures on planar or rectangular faces (see Figure 7);

• Size, e.g. to avoid unrealistic constructions with
mismatching proportions.

Inputs, outputs and constraints help specify how components
are intended to be used, but should not restrict it. For example,
although in most cases windows are meant to be built on planar
walls, it would not be wise to impose such a regulation, since it
might need to be overridden e.g. on a fictional building or when
addressing a more modern architectural style. Their application
must therefore provide the necessary flexibility for the users to
employ the components as they see fit.

4.3 Semantic Flow Control
We introduce a new graph creation paradigm for the

combination of the presented semantic components into semantic
graphs. Considering that each node and port has a certain
architectural meaning, the whole graph is a connection of
semantic concepts, instead of mere geometric operations. This
way, even untrained users can read, understand and assemble such
graphs without specific knowledge of shape grammars and
geometric derivation.

Semantic graph editing can be aided through flow filters to
introduce restrictions on concept connections. Filters can be
placed on the edges, thus establishing conditions on the shape
flow. When two semantic components are connected, existing
constraints of the destination node are integrated with the edge
filter (see Figure 8).

Figure 8: Flow filter on an edge, featuring several criteria. The
first 3 criteria correspond to the constraints defined on the
grid component (see Figure 6).

The purpose of this filter approach is to provide a simple and
straightforward method for introducing local changes. The work
by Patow [2] presented a similar level of control using exception
nodes. Our solution is more flexible and compact.

Figure 9 shows a semantic graph and its corresponding model
outcome: one component node creates the main building block,
another builds a terrace on the top face and a last one creates a
grid-like structure on the façades. From this last component, 4

different window styles and 2 doors are introduced according to
certain patterns.

Figure 9: Semantic Assembly of components, featuring distinct
applications of flow filters

As mentioned before, filters are sets of conditional criteria,
based on shape properties, such as direction, geometry, size,
occlusion state, etc. It is possible to introduce new shape
properties in the following ways:

• By defining global attributes in the input node of the
semantic graph;

• By using components that feature data forwarding attributes.

Using a database of check functions, it is possible to generate
matching criteria. In the example above, all windows have been
placed according to the (x,y) coordinates of the façade grid (see
Figure 7), which was a shape property provided by the grid
component itself. The generated criteria are listed in Figure 10.

Figure 10: Criteria generation for grid coordinate properties.

This level of control based on a grid structure is comparable to
that of Lipp et al. [3] through semantic locators, which allow the
control over individual columns, rows or particular coordinates.
Our criteria play a similar role, but are more flexible, since they
are generated from shape properties. This enhances the level of
local control extensibility of this semantic assembling solution.

5. IMPLEMENTATION AND RESULTS
In order to test the applicability and usability of such a visual

programming definition, we have developed an editor that follows
the mentioned methodological approach to address the generative
power of the CGA Shape Grammar [8]. This choice was
motivated not only by the grammar’s popularity in the field, but
also by the availability of the authoring tool CityEngine [9]. The
editor has been implemented in Java using the Eclipse RCP, a rich
client platform for general purpose applications.

Figure 12: Construction of the porch component featured in Figure 1. The colored overlays indicate how each graph section
contributes to the respective model states shown on the bottom. The corresponding CGA spans over 200 lines of grammar rules.

5.1 Graphical User Interface
The graphical user interface (GUI) is split into multiple

dockable windows, as shown in Figure 11.

Figure 11: Graphical user interface of the visual editor

The graph editor area (see Figure 11, top) contains the
necessary tools for the construction of graphs. Adding nodes to a
graph is either achieved by dragging-and-dropping from a toolbar
located on the top or through a mouse context menu. Connections
between the nodes are built by drawing edges between ports.

The Inspector pane (see Figure 11, right) provides information
concerning the currently selected node or edge, as well as the
necessary controls (e.g. sliders, textboxes) to alter its properties.

Finally, the 3D Rendering view (see Figure 11, bottom)
displays the geometry model of the current graph. Among the
usual viewport rendering options, it allows the visualization of the
shape scopes, pivots and bounding boxes, which are of extreme
relevance to the modeling control, but often a source of frustration
by many users.

5.2 Editing Graphs
Our graph design canvas allows the combination of CGA Shape

operations. Node labels reflect the operation or component name
by default, but can be renamed to improve readability without
affecting the chaining of the underlying rule symbols. Input nodes

allow the choice of the starting shape (e.g. horizontal and vertical
rectangles, concave shapes, volumes), which is used to create the
preview model in the 3D rendering area.

To allow easy debugging, edges can be temporarily deactivated
by the user, interrupting the data flow but without actually
breaking existing graph connections. This option is extremely
useful when a user wants to focus on a specific path, while
temporarily hiding the remaining ones. Similarly, nodes can also
be disabled, which is useful to understand the consequence of
certain operations.

We show in Figure 12 the stepwise creation of a porch
component suitable to be applied on a façade shape. The graph
features further component nodes that refer either to previously
created subroutines (‘Texture’) or to more complex architectural
elements (‘Stairs’, ‘Balustrade’). The various steps show the
impact of each graph section, which was achieved through the
addition of a small number of nodes and connections. In practice,
this example corresponds to over 200 lines of CGA rules scattered
among various files. In contrast, our representation clearly
introduces far more readability, maintainability and usability than
its textual counterpart.

Figure 1 and 9 depict simpler semantic graphs created using our
editor. The use of filters allows for a complete model overhaul
with only a small number of changes and facilitates the creation of
multiple building variations with very little effort.

We introduced our visual editors to artists with a CGA Shape
Grammar background. Their reaction was very positive: they were
already familiar with the node-based paradigm for procedural
design and appreciated its adaptation to the shape grammar
specificities. They became especially interested in the possibility
of creating semantic components. However, when assembling
them, they pointed out that it was not always easy to choose the
right filter on a first try and suggested using an interactive picking
system that would find the filters based on the user selection on
the model.

5.3 Exporting and Importing CGA Shape
Besides the obvious increase in user productivity, the automatic

generation of the grammar rules from the node representation is

beneficial in the sense that it can be tweaked in order to produce
better structured and more optimized rules. The code generation
process starts by building the header of the file and writing the
global attributes defined in the input node. From there, the
algorithm recursively analyzes the chaining of nodes, declaring
new rules for each of the following cases: (i) if it is an input node;
(ii) for each port of a divergence node; (iii) for each node port
featuring shape copy; (iv) if the input port of a node has several
incoming edges, i.e. for recursion and path convergence cases; (v)
when referring and joining component nodes. If a node does not
fit any of these cases, it is simply chained within the leading rule.

Visual CGA files are stored in their own format and the CGA
are created on demand. Older CGA files can be translated to this
interactive paradigm, too. Importing requires a first parsing step to
identify the rule symbols, attributes, parameters and operations.
Afterwards, operations within rules are turned into nodes and the
connections between them are extracted from rule references and
from the operation sequencing within rules. Existing rule
parameters are replaced with global attributes. By default, a single
component is created from the CGA file, although it is also
possible to create multiple components from selected subsets of
rules.

6. CONCLUSIONS AND FUTURE WORK
We presented a visual node-based methodology to address the

numerous shape grammar challenges that arise from its textual
representation. On a representation level, we extended existing
geometric flow approaches [2] with the possibility to define
recursive procedures. We addressed the parameter handling with a
simple concept of attribute data flow and demonstrated how
function overloads can be mapped to node properties. On an
editing level, we proposed an intuitive authoring technique that
focuses on the encapsulation of grammar snippets into reusable
components. When enhanced with semantic data, they provide a
high level architectural vocabulary that can be combined using
filters, yielding a much more flexible approach than the creation
of semantic locators [3].

Future work will focus on further developing semantic graph
manipulation and expressive power. Our current approach still
requires users to search and edit filters directly, but this could be
assisted through interactive techniques to find filters based on an
explicit selection on the model. This is a first of many steps
towards the integration of manual editing and procedural
modeling techniques [16]. We believe that node-based systems
are instrumental to harness the power of procedural modeling
methods and that properly supporting both semantics and manual
editing will be essential to bring those methods to mainstream
content production workflow.

ACKNOWLEDGMENTS
We would like to thank all our colleges at the Esri R&D for

their precious advices, background of node-based systems,
implementation support and testing feedback.

This work is partially supported by the Portuguese government,
through the National Foundation for Science and Technology -
FCT (Fundação para a Ciência e a Tecnologia) and the European
Union (COMPETE, QREN and FEDER) through the project
PTDC/EIA- EIA/114868/2009 entitled “ERAS - Expeditious
Reconstruction of Virtual Cultural Heritage Sites - PTDC/EIA-
EIA/114868/2009” and through the Ph.D. Scholarship
SFRH/BD/73607/2010.

REFERENCES
[1] R. M. Smelik, T. Tutenel, K. J. de Kraker, and R. Bidarra,

“A declarative approach to procedural modeling of virtual
worlds,” Computers & Graphics, vol. 35, no. 2, pp. 352–
363, Apr. 2011.

[2] G. Patow, “User-Friendly Graph Editing for Procedural
Modeling of Buildings,” IEEE Computer Graphics and
Applications, no. April, 2012.

[3] M. Lipp, P. Wonka, and M. Wimmer, “Interactive visual
editing of grammars for procedural architecture,” ACM
Transactions on Graphics, vol. 27, no. 3, p. 1, Aug. 2008.

[4] L. Krecklau and L. Kobbelt, “Interactive modeling by
procedural high-level primitives,” Computers & Graphics,
vol. 36, no. 5, pp. 376–386, Aug. 2012.

[5] G. Stiny, “Introduction to shape and shape grammars,”
Environment and Planning B, vol. 7, no. 3, pp. 343–351,
1980.

[6] G. Stiny and J. Gips, “Shape Grammars and the Generative
Specification of Painting and Sculpture,” in Information
Processing ’71, 1972, pp. 1460–1465.

[7] P. Wonka, M. Wimmer, F. Sillion, and W. Ribarsky,
“Instant architecture,” in ACM SIGGRAPH 2003 Papers,
2003, vol. 22, no. 3, pp. 669–677.

[8] P. Müller, P. Wonka, S. Haegler, A. Ulmer, L. Van Gool,
and L. Van Gool, Procedural Modeling of Buildings, vol.
25, no. 3. Boston, Massachusetts: ACM, 2006, pp. 614–
623.

[9] Esri, “Esri CityEngine | 3D Modelling Software for Urban
Environments,” 2013. [Online]. Available:
http://www.esri.com/software/cityengine/. [Accessed: 21-
Feb-2013].

[10] L. Krecklau, D. Pavic, and L. Kobbelt, “Generalized Use of
Non-Terminal Symbols for Procedural Modeling,”
Computer Graphics Forum, vol. 29, no. 8, pp. 2291–2303,
Dec. 2010.

[11] L. Krecklau and L. Kobbelt, “Procedural Modeling of
Interconnected Structures,” Computer Graphics Forum, vol.
30, no. 2, pp. 335–344, Apr. 2011.

[12] Autodesk Inc., “Autodesk Maya,” 2013. [Online].
Available: http://usa.autodesk.com/maya/. [Accessed: 21-
Feb-2013].

[13] Allegorithmic, “Allegorithmic Substance Designer,” 2012.
[Online]. Available:
http://www.allegorithmic.com/products/substance-designer.
[Accessed: 21-Feb-2013].

[14] Autodesk Inc., “Autodesk Softimage,” 2013. [Online].
Available: http://autodesk.com/softimage. [Accessed: 21-
Feb-2013].

[15] Side Effects Software, “Houdini,” 2013. [Online].
Available: http://www.sidefx.com/. [Accessed: 21-Feb-
2013].

[16] R. Smelik, T. Tutenel, K. J. de Kraker, and R. Bidarra,
“Integrating procedural generation and manual editing of
virtual worlds,” in Proceedings of the 2010 Workshop on
Procedural Content Generation in Games - PCG ’10,
2010, pp. 1–8.

