Node-Based Shape Grammar Representation and Editing

Pedro Brandao Silva Pascal Miiller
FEUP/INESC ESRI R&D
ESRI R&D pascal.mueller@esri.com
TU Delft

pedro.brandao.silva@fe.up.pt

-
pi;..;;;ﬁ o
» L /\-\i%i f\E”\///

/ ’ Chimney
1

< L

@ .
D Porch Croupu

Antonio Coelho
FEUP/INESC
acoelho@fe.up.pt

Rafael Bidarra
TU Delft
r.bidarra@tudelft.nl

[Pt
Empty Wall C ouut
i -
\\"/(ﬂ
Stairs Tl
-
¥ [
Entrance Door Cwat
e

-

Windows Open C-ai

-
W Indmﬂw "

_
—

Figure 1: A semantic node-based graph featuring theombination of high-level architectural conceptsThis representation maps to
shape grammars, which in turn generate the displayemodels. These two share almost the same graph sifieation with only slight
differences (highlighted nodes and edges). The ‘Rdr node exists only in the graph of model A, whiléhe ‘Stairs’ only in that of B.
Additional local variations are achieved through fiters on the edges, e.g. causing every other window be opened, and the

locations of the chimney and entrance door to be ehged on the fagade.

ABSTRACT

Mass content creation is nowadays one of the mupbitant

challenges for game artist3his paper presents a high-level

architectural modeling solution that combines thié generative
power of shape grammars with the ease of use eriifity of a

node-based visual language. Our approach compiskape data
flow character and introduces some novel featunesluding

recursion, parametric flow, and flow filtering. Thenain

development model consists of encapsulating baperations
into semantically-rich, reusable components that ba more
easily assembled using filters. Eventually, thigl#es users to
concentrate on the more intuitive and interactievefopment
layers, while the text-based grammar rules are naatically

generated.

Categories and Subject Descriptors

1.3.5 [Computer Graphics]: Computational Geomeing ®bject
Modeling—Modeling packages; F.4.2 [Mathematical icognd
Formal Languages]: Grammars and Other RewritingeBys—

Grammar types (e.g., context-free, context-sergjitiv

General Terms
Design, Languages

Keywords
shape grammars, node-based design, semantics

1. INTRODUCTION

The use of procedural methods in digital game®&oming an
increasingly attractive solution for the mass gatien of three-
dimensional content [1]. Shape grammars are a pogxample
of procedural modeling effectiveness in the scoparchitectural
modeling. Using production rules, one can specifysea of
geometric replacement processes that progressivetgase the
detail of a geometric shape, from a basic to a momplex form.
This grammar specification can be parameterized emithed
with stochastic techniques, so that it can be useproduce a
large variety of designs. When building extensivéual urban
environments, manual approaches tend to be toedimsuming
and expensive. Shape grammars, on the other hamddeal to
handle such extensive, but mostly pattern-repetitiature.

However, one of the greatest features of shapergeamis also
one of their greatest inconveniences: the procédiasription of
a model is usually done in textual form, as in gusace of
programming instructions, rather than with expligéometry.
This makes it not only unattractive, but also veard to grasp

and manipulate by artists without a programmingsoripting
background.

The most common difficulty derives from its decorsition
into rules, which makes the procedural process fluavrd to
understand, maintain and edit. Rules refer to othkss through
their named symbols, typically related to the ufyileg process
or entity. Still, not always can rules be namecrafomething
semantically relevant, making rule symbols hardemainage and
to understand by other users. Ideally, one wouttierabuild,
reuse and share shape grammar snippets, yet itibggthem
requires proper rule symbol association and thelugen of
name clashes if no namespace solutions exist.

Parameter passing can become an additional bufdehger
complicating rule management. Within a rule bodgpmetric
operations are handled with a set of overloadedtioms, whose
syntax, working and usage is hardly intuitive. Hinaesting and
debugging a grammar is also challenging, giverhas control
over the sequence of operations scattered throuighbe
complicated rule chaining.

In recent years, various content creation appraadmhave
adopted visual node-based paradigms. With that iimd mwe
introduce a node-based visual approach to providencae
intuitive interface for shape grammar generatiorocpsses,
extending graph design concepts from previous wizkd]. With
the same goal, we address the mentioned shape grassues by
introducing the following contributions:

e We introduce a comprehensive node-based repreigentat
for state-of-the-art shape grammar rules that coawsbithe
attribute data flow with the shape data flow withoyclic
graphs, thereby enabling 3D artists to easily wstdad and
edit complex rule sets.

e For the intuitive authoring of procedural modelsg w
propose a novel visual editing approach that facusethe
encapsulation of shape grammar snippets into réejsab
semantically-rich components that can later be leasi
combined through flow filters and constraints.

This paper is structured as follows: after reviepdome related
work, Section 3 will introduce our visual node-bése
representation of shape grammars. Section 4 wikrilee the
editing mechanics for that representation, white $ection 5 will
refer to our implementation, together with someulitss Lastly,
the conclusions and some future work will be diseds

2. RELATED WORK

The application of shape grammars as a formal &gprdo
architectural design has been first brought up tiyySand Gips
[5], [6]. Building on that concept, Wonka et altrimduced split
grammars [7], a new type of parametric set gramsizpported
by an attribute matching system steered by a cobgrammar,
offering the flexibility required to model buildisgwith many
different styles. Based on this work, Miiller et ééveloped the
CGA Shape [8], a shape grammar which proceduraherates
variations of a model starting from volumetric sbap and
proceeding to the generation of detail consisteith the mass
model. The implementation of the CGA Shape is notegrated
in the commercial system CityEngine [9]. As a galization of
previous shape object definitions, Krecklau ef{H0] introduced
abstract structure templates to support the useuttfple types of
non-terminal symbols with domain-specific operatoesd
attributes. By using Python as a language basg,wieee able to
apply their modeling language?® architectural as well as plant

modeling, having expanded it later for the modeling
interconnected structures, such as bridges [11].

The main drawback of these methods lies on theiudd, rule-
based nature: they allow only indirect control otrer final model
by editing the underlying text-based grammar, abgl control
by changing some parameters. An attractive apprtmashlve this
problem consists of using a visual editor as a tfend to
automatically generate grammar production rulesppLi[3]
presented a visual editing system which introdutreditional
modeling techniques, allowing a more intuitive apdwerful
control over each grammar aspect. However, théyrstied on a
rule structure design for editing and executionsoil despite
having introduced instance locators for custom mbntthe
approach is not flexible enough to introduce newety of
semantic selectors. Krecklau et al. [4] presentedranipulators
in order to create a visual representation of btitgparameters
directly in model space, revealing the influenceaoparameter.
They also introduced two edition modes: a Profesgdionode, to
create and configure encapsulated modules (caligh-lavel
primitives) and a High-Level mode, where these lbartombined
and customized using an interactive modeling iatef A
limitation, though, is that the P-Mode requires oerediting of a
textual-based grammar.

Visual programming languages allow the manipulatioh
program elements graphically rather than textuallgme of its
variants represent nodes as operations and edgesidsctors of
data tokens. Following this paradigm, visual nodsdd editors
have become a standard for a variety of purposdssgstems,
including material editors (e.g. Autodesk Maya [12exture
editors (Allegorithmic Substance Designer [13])iptcreditors
(e.g. Autodesk Softimage [14]) and model animatieditors
(SideFX Houdini [15]). The work of Patow [2] preded a
dataflow adaptation for shape grammars using diteetcyclic
graphs (DAGs), bridging the disassociation betweetes.
Despite its advantageous possibility of model i@aifon and
graph rewriting, the acyclic approach precludes tise of
recursion. The paper also mentions the ability teae
components, but provides little detail on how tiperation nodes
are handled or on how the parametric flow can lrgrotied.

3. NODE-BASED REPRESENTATION

In this section we will describe how the shape gnam
definition is represented by a visual, node-baseatkflow,
affecting the way that the shapes and their assatiattributes
and parameters are controlled throughout the grapé. also
discuss how the operations are mapped to nodehandtheir
various configurations can be achieved.

Shape grammar-based procedural methods, such asndse
presented in [7], [8], [10], describe a scene odelas a set of
production rules. These follow the form

Predecessor Successor

where the predecessor is a non-terminal symbokteeplaced
successively by a set of other non-terminal or ite@insymbols
(the successor of the rule). The nature of manipdlaymbols per
method, from geometric constructs enclosing allazéoid
scope to more complex class instances [10]. Intshbese
approaches perform the successive creation orforanmastion of
geometry by means of operations. Rules are chdgedatching
non-terminal symbols mentioned in the successasnef rule to
that symbol in the predecessor of another ruleeRutay accept
parameters and be restricted to the evaluation dbgical
expression in order for the rule to be applied.

For exemplification, the used grammar notation digf@ut this
paper loosely follows the one presented by Miilteale [8] and
CityEngine [9], but could be easily adapted for estlshape
grammar derivations as well. The adaptation ofdteescepts to a
visual paradigm will be explained in the followiagbsections.

3.1 Graph Structure

In our visual representation, the procedural mdisiel directed
cyclic graphG(V,E), where the nodes V represent the modeling
process and the edgBsdescribe the data flow from one node to
the next Connections are established between input and butp
ports that, being anchored to nodes, charactetizeptocess
interface The easy linking and unlinking of nodes provides
more flexible chaining of processes than the stahtkxtual rule
paradigm.

We distinguish several types of graph nodes, eadtribing
either flow-operational essentials or geometricrapens. Their
type is identified by both shape and color. Shagfinds node
class and characterizes its general behavior with@ graph,
while the color is used for differentiating exiglircategories

within a class (see Figure 2).
Dw O Output |

Here, we identify the following classes:

[Component

o

Figure 2: Available node classes

« Input Node: the starting point of every graph. As such, it is
the location where global graph properties can éfned,
such as starting shape, tags or other metadatat hues
have no input ports and only one output port. Egdph
must have exactly one and only one input node.

¢ Operation Node the most common node, featuring multiple

categories, according to the type of performed atpet, such
as geometry manipulation, coloring or texturingcltéype of
operation features its own distinct node configorat
possibilities. Operation nodes have only one inpde and
one output node, meaning that they take one sistidpe as
input at a time, perform some kind of transformatim it and
then return also a single shape.

« Diverge Node:takes one single shape as input, but, contrary

to the operation node, can output multiple onesickanally,
it performs a transformation, selection or partiticesulting in
various shapes, which can be handled in differeysrhese
nodes have one input port and at least one outptit phape
splits are examples of operations fitting this slas

* Value Read/Write Node:takes one single shape as input at a
time. Reads or writes some attribute data assalciaté and
then forwards the shape to the output port.

¢ Output Node: defines a data stream exit. The use of output
nodes is optional, serving mainly as a means tel laind
identify the resulting leaf shapes (see sectioh 3.5

« Component Node: encapsulates a full graph as a single
complex operation. Components are discussed in ohetal
in section 3.5.

3.2 Geometric Data Flow

Nodes are handlers of shape data: in general, nabesve
shapes as input, perform a transformation, analysifiiter and
output one or more resulting shapes. Two nodedeaonnected
by drawing an edge from an output port of one nimdhe input

y port of the other (see Figure 3a). When severaks@de chained

through this approach, shape data flowis defined. For each
resulting shape, we can trace back the sequencedds and
ports that led to its creation. This is called trevelopment path
of a shape.

(a) Operation Sequencing

g O texture j

Input — extrude(10.0)

texture("images/Concretejpg")

(b) Path Divergence and Path Convergence

»:

Input

Color01

D color

D texture j

split(x) { 3.0 : Color01 | 4.0: Translate01}

—>

—» color("#008000") Texture 01

Translate01 —» translate(10,0,5) Texture0l

TextureO1 —» texture("images/Grass.jpg")

g D allgnScope -
i("models/Cube.obj")

translate(8,3,2)

(c) Shape Copy

Input — AIcgnScopeOl Translate(1

Translate01 —»

AlignScope01 —» alignScope()

Figure 3: Examples of visual graphs and their tranktion to
shape grammar rules.

Each node can have only one input port, but acaspisiple
incoming edges, allowing the reuse of a developrpath (path
convergence — see Figure 3b). On the other hantk sedes may
contain multiple output ports, as a means to allogvseparation
of development paths (path divergence — see Fighje Also,
output ports can also be the source of multiplege@ing edges,
each producing a shape copy (see Figure 3c).

Sometimes, one may need to subject a shape toame s
procedural paths more than once, followingeursivescheme. It
is therefore possible to create cycles within thaph, connecting

an output port of a child node to the input poriagbarent node
(see Figure 4). Naturally, such recursive pathstrpugvide at
least one possible exit condition so as to avofihite loops.
Such cases can be easily found and avoided usiaghgr

transversal algorithms.
ut D case ! ~
Split01 --> split(x,adjust)

? D
{0.5:All | ~1.0:Case01 | 0.5: All}

Input --> Split01

Case01 --> case scope.sx > 1:
Split02
translate(rel,scope,0.0,0.0,1)
Split01
else:
Split02
Split02 --> split(x,adjust)
{ 1.0 : load("assets/woodLog.obj") }*

Figure 4 - Recursive example for creating a stackegile of
wooden logs.

3.3 Parametric Data Flow

In addition to the geometric data flow, our visymdradigm
represents as well the parametric data flow adtesgraph nodes,
which is fundamental to steer the generation psEedn textual
shape grammars, this has been achieved eithergthratiribute
declarations, which exist on a global scope, aough parameter
passing from one rule to the next rule. While ttiference is
obvious and necessary for programmers, it is neayd easy to
grasp by designers with little programming backgihuwith this
in mind, the two concepts have here been mergedargimple
global attribute manipulation.

A Attributes

[Fioat (StepLength = 1.3)
[H Fioat (StepHeight = 1.0)
[H Integer (Stepindex = 0)

A Properties
Height [E7 | (Steplndex+1)*StepLength

‘

~ Shape Attributes
[Red = stepindex-o.1
[Green = Steplndex*0.1
[T Blue = Stepindex*0.1

Data Forwarding
[l index = [Stepindex v
[total - M v

attr Steplength = 1.3
attr StepHeight = 1.0

attr Stepindex = 0

Input --> split(y) { set(StepIndex,split.index) Step}*

Step --> extrude((StepIndex+1)*StepLength)

color(Stepindex*0.1, Stepindex*0.1, Steplndex*0.1)
Stairs
Figure 5: Parametric flow: for each shape, theSteplndex

variable is updated in the split node and used aftesards to
create the sized step, colored with a gray shade.

In our visual representation, global attributes @eéned right
on the input node, which, being the starting paingévery graph,
makes them accessible to all following nodes. Bittés can be
read and written anywhere in the course of a deveémt path,
yet this change is only propagated to its descenslaapes (i.e.
each shape has its own copy of the attributes,wisipassed on
to derived shapes). This procedure follows the tional
programming paradigm (where the function argumeng¢salways
passed by value) but without requiring an exptieitlaration.

Attribute data can be explicitly changed througbcific nodes,
e.g. a node that explicitly assigns a new valueaddition, some
nodes can provide useful data related to the peddroperation
(e.g. in a split, the total number and the indexeath resulting
shape). This data may be used by assigning igtolzal attribute,
a process which is calledhta forwarding(see Figure 5). When
shapes “flow” through such nodes, new data is aesig
prevailing throughout the rest of the developmexihpunless it is
expressly changed again. Doing so reduces the toegdal with
local attributes or explicit references to nodes.

3.4 Node Configuration

Nodes perform the actual shape operations. In a&éxtu
grammars, this is achieved by using functions aheirt
arguments. Since each operation may work in diffengays,
functions may be overloaded, allowing for multiglembinations
of arguments. Getting to know and use such oveslohdwever,
constitutes another difficulty, especially for teosvith less
programming background. In order to address this, \dsual
representation uses the concept of no@erties strongly-typed
fields, which can be explicitly changed, but thasueme certain
values by default. This has become a rather comappnoach in
visual applications, due to its intuitiveness arabsee of use.
Properties may be deactivated or grouped intondisiproperty
sets, called nodestyles For instance, an operation for roof
creation may incorporate various types of parareetdepending
on the type of roof, justifying the definition ofytes such as
“shed”, “hip”, “gable”, etc. Properties are usyadissigned fixed
values, but support mathematical expressions andtiin calls
that operate on basic parametric data as well @saghttributes
(see Figure 5).

In addition to their own properties, some nodes magrporate
an enumeration of configurable elements, here geailyr called
parts. In a split operation node, for example, a part oul
correspond to a slice, whose size can be configuheda
conditional check node, a part would correspondatsingle
condition in a case-else control structure. In saages, the part
creation is linked to a port creation, since eaah peads to a
distinct development path.

3.5 Encapsulating Graphs into Components

Once assembled, full graphs can be encapsulated int
componentso be used as nodes in other graphs. The input node
and output nodes of the source graph are mapptbe teput and
output ports of the component node, respectivesfinihg its
interface (see Figure 6). Graph attributes of the component
become its configurable properties, while certaialected
attributes become data forwarding fields. In shargomponent
becomes another operation that provides a moreorith
procedure.

Output nodes are especially important to identifges meant
to be further derived. If no output nodes are defirthe resulting
shapes coming from empty output ports (ports withmutgoing
edges) will still be present in the final modelt kimply assigned
an “All” symbol, and cannot be distinguished.

A Attributes

D Top e

- Facades
Top

O BuildingMass

~ Properties
Height 1000 =
Facades

Figure 6: Mapping of a graph to a component node

Creating components consists of encapsulating shegremar
snippets. When they are imported to new graphsingortant
step consists of merging their rules, connecting imtended
grammar rules while avoiding name clashes. For teason,
imported components must be given a unique id wittiie
containing graph, in order to create a hamespadeoaercome
such conflicts.

After being conceived and employed as a componist,
underlying graph may again be subject of changds Tact
introduces a management difficulty, since greatemges on an
interface level may affect the node’s connectividn the other
hand, changes may have unexpected effects in glfgzalized
models. To help addressing these issues, we havsedetwo
import methods:

e Import by Copy: The underlying grammar logic of the

component node is copied to the graph. Subsequmamiges
on the original component graph are not refresfibts mode
is ideal to avoid unexpected changes on the uridgrivodel.

« Import by Reference: A reference to the original graph is

A criterion can be formally described as:
CR = CF (SP, CPR, CP....CR)

where CRrefers to the parameters of the check function.

Examples of criteria would be:

scope.b > 3.5 (1)
isinRangelieight, 20,50) 2)
getFacingDirectior() == “North”)
isConcavy() (4)

The elements stressed in bold in the above comditare the
shape properties, which are read from the shapghedime of the
criteria verification. Properties are verified thgh either
functions (2) or operators (1,3) that take furtheiterion
parameters. If the property is itself a Boolean, (@9 check
function is required.

One of the most fundamental features behind thetoaction
of these criteria is the decoupled compositionhafirt members:
Shape Property, Check Function and Criterion PaemeEach
of these can encompass a virtually unlimited amadintariants,
which are meant to be easily extensible by the narogier, the
user or the system itself.

4.2 Designing Semantic Components

While components can be used to simply encapssiata|
routines without specific meaning, they can alsaibed to build
architecturally significant elements, such as bnoddarts, fagade
styles or windows. The way these elements are muarie
combined, however, does follow certain architedtutasign
standards. Embedding component nodes with infoomadibout
their meaning, usage and typical restrictions aamtrioute to the
creation of a high-level vocabulary for the desigfnbuilding

kept, and the component node is refactored wheneverModels.

underlying changes occur, possibly breaking cornvigct
within the new graph, if the interface is changed.

4. VISUAL SEMANTIC EDITING

We introduce a new editing methodology consistirigthe
combination of semantically-rich component nodesfterA
introducing the concept of filters, we provide gtgi on how they
can be used to enhance component nodes. Finallyexwhkin
how they can be used to create building models gusin
vocabulary that is more familiar to designers.

4.1 Flow Filters

The graph-based approach is based on the paratigpe sind
parametric data flow. For this, we introdditers, which are flow
control elements that block certain shapes whiténtg others
through. Filters perform based on the featureshef passing
shapes, which are simply callstiape properties SPThey may
refer not only to their directly contained attribsit but also to the
result of an expression or function on the shapéltér consists
of a combination of logical statements, caltzideria CR joined
using conjunctive (“and”) and disjunctive (“or")d@&al operators.
When the criteria hold, the filter decides positjvapon the shape
flow and negatively otherwise. Each criterion cetssiof a check
on a shape property, through a specific operatofuaction,
hereby called theheck function CF

Semantic information is present in components fifsall in
their external interface, comprising the expectéud kof input
shape, the returned output shapes and the glotidluéés. The
type of expected input shapes is defined in theutinpode.
Likewise, output nodes identify the type of shafies the graph
produces. Global attributes are, as mentionedneafivithin the
input node and can be marked for data forwardirgg. dach of
these elements, using appropriate nomenclaturessenéal to
guarantee proper understanding and use of the aunpo

Figure 7 shows a basic component that splits adfagato a
grid, providing X and Y index information as datarfarding
attributes of the resulting tiles.

. Attributes

[Float Attribute (GridWidth = 1.0)
[Float Attribute (GridHeight = 1.0)
[Integer Attribute (GridX = -1)
[Integer Attribute (GridY = -1)

Constraints

M Planar
() Rectangular
[Mot Concave

Figure 7: Component Creation and Configuration

Data flow on a graph can also be configured wiitbut
constrains which are flow filters that impose restrictions the
input shapes. Examples of useful constraint typesaoctual
component instances include:

« Direction, e.qg. to restrict windows from facing west;

e Occlusion e.g. to avoid placing a balcony on a facade
occluded by other;

* Number, e.g. to avoid building more than one main entry
door;

e Geometry, e.g. to ensure the construction of certain
structures on planar or rectangular faces (sea&igu

e Size e.g. to avoid unrealistic constructions with

mismatching proportions.

Inputs, outputs and constraints help specify hompmanents
are intended to be used, but should not restridtdt example,
although in most cases windows are meant to be buiplanar
walls, it would not be wise to impose such a regoifa since it
might need to be overridden e.g. on a fictionaldng or when
addressing a more modern architectural style. Tapplication
must therefore provide the necessary flexibility foe users to
employ the components as they see fit.

4.3 Semantic Flow Control
We
combination of the presented semantic componetssemantic

graphs Considering that each node and port has a certain

architectural meaning, the whole graph is a conoecof
semantic conceptsnstead of mere geometric operations. This
way, even untrained users can read, understandsmednble such
graphs without specific knowledge of shape grammansl
geometric derivation.

Semantic graph editing can be aided through fldter§ to
introduce restrictions on concept connections.efltcan be
placed on the edges, thus establishing conditionshe shape
flow. When two semantic components are connectgibtirg
constraints of the destination node are integratgl the edge
filter (see Figure 8).

. Filter

Top [Planar

] Rectangular
[Not Concave
] Facing Street

B World Direction Equals "North"

D Building Mass

-
Facades

Direction[F] North v
[True

Invert

Figure 8: Flow filter on an edge, featuring severatriteria. The
first 3 criteria correspond to the constraints defned on the
grid component (see Figure 6).

The purpose of this filter approach is to providsiraple and
straightforward method for introducing local chasig&éhe work
by Patow [2] presented a similar level of contrsing exception
nodes. Our solution is more flexible and compact.

Figure 9 shows a semantic graph and its correspgmodel
outcome: one component node creates the main bgiloliock,
another builds a terrace on the top face and aolastcreates a
grid-like structure on the facades. From this le@mponent, 4

introduce a new graph creation paradigm for the

different window styles and 2 doors are introdueedording to

O Terrace i gt 0 Green Windows i+
D Grid }P

certain patterns.

)!pm [0 BuildingMass |

i

4

A

0 Yellow Windows _fi-a

i

O Red Windows Cjiva

A

aaa ey

il

O Blue Windows Cjii v«

il

2 Main Door

i

Figure 9: Semantic Assembly of components, featurindistinct
applications of flow filters

As mentioned before, filters are sets of conditiocrdteria,
based on shape properties, such as direction, dggonsize,
occlusion state, etc. It is possible to introducewnshape
properties in the following ways:

« By defining global attributes in the input node tife
semantic graph;
« By using components that feature data forwarditripates.

Using a database of check functions, it is possdiblgenerate
matching criteria. In the example above, all winddwave been
placed according to the (x,y) coordinates of thgade grid (see
Figure 7), which was a shape property provided oy ¢rid
component itself. The generated criteria are ligteeigure 10.

Items.

[GridX(GridLayouter;
[} GridX(GridLayouter,
[GridX(GridLayouter
[GridX(GridLayouter;

Categories
Connector

Equals ...

Is Multiple of ...

Is Greater Or Equals ...
Is Lesser Or Equals ...

Component Data

Custom

Direction

Geometric
Global Attribute
Indexing

[} GridY(GridLayouter
. GridY(GridLayouter
[GridY(GridLayouter,

Equals ...
Is Multiple of ...
Is Greater Or Equals ...

Pivot .Grid\’(GridLayouter Is Lesser Or Equals ...

Scope

Figure 10: Criteria generation for grid coordinate properties.

This level of control based on a grid structured@mparable to
that of Lipp et al. [3] througemantic locatorswhich allow the
control over individual columns, rows or particulzoordinates.
Our criteriaplay a similar role, but are more flexible, sinbey
are generated from shape properties. This enhaheekevel of
local control extensibility of this semantic asséindpsolution.

5. IMPLEMENTATION AND RESULTS

In order to test the applicability and usability «afch a visual
programming definition, we have developed an edtat follows
the mentioned methodological approach to addresgé¢herative

power of the CGA Shape Grammar [8]. This choice was

motivated not only by the grammar’s popularity fre tfield, but
also by the availability of the authoring tdBityEngine[9]. The

editor has been implemented in Java using the &#&RCP, a rich
client platform for general purpose applications.

5.1 Graphical User Interface
The graphical user interface (GUI) is split into Itiple
dockable windows, as shown in Figure 11.

DsiseCrimescca =

WO >

>

= Coavien 5]

Figure 11: Graphical user interface of the visual ditor

The graph editor area (see Figure 11, top) contalires
necessary tools for the construction of graphs.idgldiodes to a
graph is either achieved by dragging-and-droppiogifa toolbar
located on the top or through a mouse context ménanections
between the nodes are built by drawing edges betpeds.

The Inspector pane (see Figure 11, right) providéEsmation
concerning the currently selected node or edgeyels as the
necessary controls (e.g. sliders, textboxes) & @#t properties.

Finally, the 3D Rendering view (see Figure 11, dwit
displays the geometry model of the current grapmoAg the
usual viewport rendering options, it allows theudiization of the
shape scopes, pivots and bounding boxes, whiclofaegtreme
relevance to the modeling control, but often a sewf frustration
by many users.

5.2 Editing Graphs

Our graph design canvas allows the combination@AGhape
operations. Node labels reflect the operation enmunent name
by default, but can be renamed to improve readgpbilithout
affecting the chaining of the underlying rule syrisbdnput nodes

allow the choice of the starting shape (e.g. hatizband vertical
rectangles, concave shapes, volumes), which is taserkate the
preview model in the 3D rendering area.

To allow easy debugging, edges can be temporaegygtivated
by the user, interrupting the data flow but withocadtually
breaking existing graph connections. This optioneigremely
useful when a user wants to focus on a specifih, pahile
temporarily hiding the remaining ones. Similarlpdes can also
be disabled, which is useful to understand the equmsnce of
certain operations.

We show in Figure 12 the stepwise creation of aclpor
component suitable to be applied on a fagade sh&pe.graph
features further component nodes that refer eithgureviously
created subroutines (‘Texture’) or to more compdeghitectural
elements (‘Stairs’, ‘Balustrade’). The various stephow the
impact of each graph section, which was achievedutih the
addition of a small number of nodes and connectibngractice,
this example corresponds to over 200 lines of C@EAsrscattered
among various files. In contrast, our represematiearly
introduces far more readability, maintainabilitydamsability than
its textual counterpart.

Figure 1 and 9 depict simpler semantic graphs edeasing our
editor. The use of filters allows for a completedaboverhaul
with only a small number of changes and facilitatescreation of
multiple building variations with very little effar

We introduced our visual editors to artists witlC&A Shape
Grammar background. Their reaction was very pasitirey were
already familiar with the node-based paradigm foocpdural
design and appreciated its adaptation to the shgpemar
specificities. They became especially interestethe possibility
of creating semantic components. However, when natsifey
them, they pointed out that it was not always dasghoose the
right filter on a first try and suggested usingimteractive picking
system that would find the filters based on ther w&tection on
the model.

5.3 Exporting and Importing CGA Shape
Besides the obvious increase in user productithiy,automatic
generation of the grammar rules from the node smpr@tion is

2. Floor & Stairs

1. Initial Shape

5. Texturing

[3. Pillars & Balustrade

4. Roof

alignScope

O Balustrade }-’

Figure 12: Construction of the porch component featred in Figure 1. The colored overlays indicate howeach graph section
contributes to the respective model states shown dine bottom. The corresponding CGA spans over 20@hks of grammar rules.

beneficial in the sense that it can be tweakedrderto produce
better structured and more optimized rules. Thesageheration
process starts by building the header of the fild ariting the
global attributes defined in the input node. Frohere, the
algorithm recursively analyzes the chaining of repdgeclaring
new rules for each of the following cases: (i ifsian input node;
(i) for each port of a divergence node; (iii) feach node port
featuring shape copy; (iv) if the input port of ade has several
incoming edges, i.e. for recursion and path corameg cases; (V)
when referring and joining component nodes. If dendoes not
fit any of these cases, it is simply chained witthia leading rule.

Visual CGA files are stored in their own format ahé CGA
are created on demand. Older CGA files can be lafmusto this
interactive paradigm, too. Importing requires atffgarsing step to
identify the rule symbols, attributes, parametard aperations.
Afterwards, operations within rules are turned intmles and the
connections between them are extracted from rdérerces and
from the operation sequencing within rules. Exigtimule
parameters are replaced with global attributesd®&wult, a single
component is created from the CGA file, althoughisitalso
possible to create multiple components from setestgbsets of
rules.

6. CONCLUSIONS AND FUTURE WORK

We presented a visual node-based methodology tessldhe
numerous shape grammar challenges that arise froreitual
representation. On a representation level, we dggrexisting
geometric flow approaches [2] with the possibility define
recursive procedures. We addressed the parametelinqawith a
simple concept of attribute data flow and demomstrahow
function overloads can be mapped to node proper@es an
editing level, we proposed an intuitive authorirghnique that
focuses on the encapsulation of grammar snippétsrgusable
components. When enhanced with semantic data,gireyde a
high level architectural vocabulary that can be oored using
filters, yielding a much more flexible approachrtthe creation
of semantic locators [3].

Future work will focus on further developing semargraph
manipulation and expressive power. Our current @ggr still
requires users to search and edit filters direttly, this could be
assisted through interactive techniques to fingrsl based on an
explicit selection on the model. This is a first mwfany steps
towards the integration of manual editing and pdocal
modeling techniques [16]. We believe that node-thasgstems
are instrumental to harness the power of proceduadeling
methods and that properly supporting both semaaticsmanual
editing will be essential to bring those methodsmtainstream
content production workflow.

ACKNOWLEDGMENTS

We would like to thank all our colleges at the HR&D for
their precious advices, background of node-basestess,
implementation support and testing feedback.

This work is partially supported by the Portugugseeernment,
through the National Foundation for Science andhmetogy -
FCT (Fundacao para a Ciéncia e a Tecnologia) amdttimopean

Union (COMPETE, QREN and FEDER) through the project [16]

PTDC/EIA- EIA/114868/2009 entitled “ERAS - Expeditis
Reconstruction of Virtual Cultural Heritage SiteTDC/EIA-
EIA/114868/2009” and through the Ph.D.
SFRH/BD/73607/2010.

Scholarship

REFERENCES

[1] R. M. Smelik, T. Tutenel, K. J. de Kraker, aRdBidarra,
“A declarative approach to procedural modelingicisal
worlds,” Computers & Graphigsvol. 35, no. 2, pp. 352—
363, Apr. 2011.

[2] G. Patow, “User-Friendly Graph Editing for Pealural
Modeling of Buildings,”IEEE Computer Graphics and
Applications no. April, 2012.

[3] M. Lipp, P. Wonka, and M. Wimmer, “Interactivésual
editing of grammars for procedural architectueCM
Transactions on Graphi¢sol. 27, no. 3, p. 1, Aug. 2008.

[4] L. Krecklau and L. Kobbelt, “Interactive modetj by
procedural high-level primitivesComputers & Graphigs
vol. 36, no. 5, pp. 376-386, Aug. 2012.

[5] G. Stiny, “Introduction to shape and shape grears,”
Environment and Planning,®Rol. 7, no. 3, pp. 343-351,
1980.

[6] G. Stiny and J. Gips, “Shape Grammars and thec@tive
Specification of Painting and Sculpture,”liformation
Processing 711972, pp. 1460-1465.

[71 P.Wonka, M. Wimmer, F. Sillion, and W. Ribaysk
“Instant architecture,” iMCM SIGGRAPH 2003 Papers
2003, vol. 22, no. 3, pp. 669-677.

[8] P. Mdiller, P. Wonka, S. Haegler, A. Ulmer, LaW Gool,
and L. Van GoolProcedural Modeling of Buildingwol.
25, no. 3. Boston, Massachusetts: ACM, 2006, pp-61
623.

[9] Esri, “Esri CityEngine | 3D Modelling Softwafer Urban
Environments,” 2013. [Online]. Available:
http://www.esri.com/software/cityengine/. [Access2dl-
Feb-2013].

[10] L. Krecklau, D. Pavic, and L. Kobbelt, “Genkzad Use of
Non-Terminal Symbols for Procedural Modeling,”
Computer Graphics Forupvol. 29, no. 8, pp. 2291-2303,
Dec. 2010.

[11] L. Krecklau and L. Kobbelt, “Procedural Modwdi of
Interconnected StructuresComputer Graphics Forupvol.
30, no. 2, pp. 335-344, Apr. 2011.

[12] Autodesk Inc., “Autodesk Maya,” 2013. [Online]
Available: http://usa.autodesk.com/maya/. [Accesgdd
Feb-2013].

[13] Allegorithmic, “Allegorithmic Substance Design” 2012.
[Online]. Available:
http://www.allegorithmic.com/products/substanceigiesr.
[Accessed: 21-Feb-2013].

[14] Autodesk Inc., “Autodesk Softimage,” 2013. [[we].
Available: http://autodesk.com/softimage. [Accesszid
Feb-2013].

[15] Side Effects Software, “Houdini,” 2013. [Ondih
Available: http://www.sidefx.com/. [Accessed: 21bFe
2013].

R. Smelik, T. Tutenel, K. J. de Kraker, andBRarra,
“Integrating procedural generation and manual egitf
virtual worlds,” inProceedings of the 2010 Workshop on
Procedural Content Generation in Games - PCG, '10
2010, pp. 1-8.

