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ABSTRACT

This paper describes an algorithm to solve the problem of partition-
ing a planar graph with a constraint on which partitions should be
adjacent or nonadjacent. We explore the applications of the algo-
rithm in Procedural Content Generation in games which includes:
the generation of political maps, distribution of terrain and con-
verting or linking Mission Graphs to game spaces. We solve this
problem using A-Star search with a heuristic for measuring graphs
similarity and we suggest techniques such as graph coarsening
to limit the search space. The algorithm sensitivity to the initial
state is analyzed next and a restart policy is suggested to overcome
that. Additionally, we present multiple constraints that can aid in
better controlling the outcomes of the algorithm and we show how
these constraints can help in the implementation of the displayed
applications.
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1 INTRODUCTION

Procedural Content Generation is the algorithmic creation of digital
content. Such content includes levels, game spaces like dungeons,
caves, maps and planets. It may also include assets like music,
textures, narrative and stories or the game rules themselves. The
attractiveness found in these methods, other than the mere joy of
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creating something out of nothing but code, is that they may reduce
the costs of development and make the game more replayable[3].
They also allow the game to adapt for the player through its content
and sometimes the content generated may be surprising because it
was not imagined that a human designer might have designed the
same content manually. In this paper, we describe an algorithm that
was inspired by the previously published work by Amit Patel [17]
and was extended by considering some important constraints that
enable developers to have better control over the final outcomes
of their content generators. This paper is organized as follows:
Section 2 surveys some related work, followed by the problem for-
mulation in Section 3. Section 4 describes our proposed algorithm.
Section 5 outlines the obtained results followed by a showcase of
examples in Section 6. We give detailed applications of this algo-
rithm in Section 7, and finally giving our conclusion and future
work in Section 8.

2 RELATED WORK

Patel’s article Polygonal Map Generation for Games [17] had been
a source of inspiration for many other generators (e.g. [2, 15]) in-
cluding our work. One of the important ideas he used was to base
generation of maps on a Voronoi diagram. The advantage of doing
so is that the generated content will have a graph and polygo-
nal structure with a more organic shape than when rectangular or
hexagonal grids, for example, are used. Also, the cells of the Voronoi
diagram can be assigned different properties of terrain, quests, nar-
rative, monsters, etc. We sought to utilize this idea in political maps1
generation but wanted to add an important constraint that is spe-
cific to political maps, which is to allow the designer to provide the
graph that describes the adjacency between the countries/regions
of the map.

The importance of this constraint appears, for example, in that
the number of edges coming into or out of a region impacts how
easy/hard it is to attack/defend, the number of routes that can go
through it, the spread of disease, etc.

We do this through partitioning the dual graph of that Voronoi
diagram (see Figure 1) or any planar graph with a constraint on
which partitions should be adjacent/in-adjacent. In other words,
how should the quotient graph? look like. We were not able to
find a paper on graph partitioning, according to the best of our
knowledge, that imposes the same constraint that we require. A
closely-related paper was by Moreira et al. [13] but in it the authors
only required that the quotient graph is directed and acyclic (DAG).

!Political maps are a representation of the borders between countries, regions,
provinces, etc.

2 The quotient graph is a graph in which every node corresponds to a partition block.
Two partition blocks A and B are said to be adjacent if at least one node in A is adjacent
to one node in B.
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Other than that, the constraints usually discussed are: minimizing
the number of edges between the partitions and balancing the
partitions sizes [10] and requesting that certain nodes in a graph
should belong to certain partitions of that graph [23].

One strategy of generating game levels is described by Joris Dor-
mans [4]. In this paper, the author suggests that we should see a
game level as being composed of two structures: the missions/tasks
which the player is going to do and the space in which they will
take place. We then generate the missions and create a space after
that which suits the generated missions. The missions are repre-
sented as a Mission Graph which is a directed graph where an edge
destination is a task that is made available when the task at the
edge source is accomplished. In Section 7.9 we will present our
algorithm as a method of converting a Mission Graph into a game
space. We formally specify the problem next.

Figure 1: The blue dots and the white edges form the Voronoi
diagram. The red dots and the black edges form its dual
graph (Delaunay triangulation). [17]

3 PROBLEM FORMULATION

We describe the problem we attempt to solve as follows:

Given an undirected planar graph G = (V, E), partition G into k
contiguous partitions such that the quotient graph Q = (v, e) is
isomorphic to a given graph C = (v/, ¢’). Two graphs are said to be
isomorphic if they have an equal number of nodes that are
connected in the same way.

In Section 7, we will show what applications will a solution to
this problem have in procedural content generation. To be brief we
will use the phrase "C is imposed on G" to mean C is isomorphic to
a quotient graph Q of G. The basic graph G which we will use for
illustration is the dual of the Voronoi diagram which is planar, con-
nected and simple (one edge per two nodes at most). Also, because
G is planar and we require the partitions to be contiguous, C must
also be planar.

4 APPROACH
4.1 A-Star Search

To solve the problem described earlier, we used A-Star search al-
gorithm [1, 7, 18]. Given a current state s we find the next states
that result from applying all the possible actions at s and we pick
the one with the lowest cost. The cost is computed as follows:
cost(s) = g(s) + h(s) where g(s) is the uniform cost of the state s
which is the number of actions that led to this state and h(s) is the
value of the heuristic. The heuristic is an estimate of the cost of the
path from a state to the solution which if chosen right can lead to
pruning large parts of the search tree.

4.2 Initial State

Every state in the search tree is a possible partitioning of G (i.e. a
quotient graph). We obtain the initial state by partitioning G into
|C|? partitions through Kernel Clustering [24][21] algorithm which
we found to result in a somewhat balanced partition sizes reducing
the sensitivity to the initial state. This algorithm is deterministic and
so variations are introduced by using different graphs G whereas
in Section 7.10 we will describe another randomized algorithm to
obtain different initial states from the same graph G.

4.3 Goal Testing

Testing for the goal state is done through VF2 [16] algorithm for
graph isomorphism determination. It is known that the problem of
graph isomorphism, when restricted to planar graphs, is solvable
in polynomial time [20].

4.4 Possible Actions

At any state, which is a possible quotient graph of G as we men-
tioned, the actions possible per partition are taking a neighbor-
ing node from an adjacent partition into its members (node-label
change) or removing a neighboring node from the graph G. For
example, in Figure 3 at the top, the actions possible are adding the
nodes 0,1,2,3,5,6 or 8 to the blue partition (which includes 4 and 7)
and similarly for the other partitions. We restrict the choice for each
partition to the neighboring nodes because we only want contigu-
ous partitions. For the same reason, we also made sure that taking
a node from another partition will not disconnect that partition
(which will rule out the nodes 3 and 5 in the previous example).
Finally, we also prevent a node to be taken from a partition if that
was the only node left in it.

As for node removal, we find this action to be very helpful in the
cases where the choice of C is hard or impossible to impose on G,
for example, it is impossible to impose the graph Cy (a cycle of four
nodes) into the graph that is a grid of size 3 X 3 unless we remove
the node in the middle of the grid (See Figure 2 and Figure 13).
Node removal is also necessary when C is disconnected and G is
connected (See Figure 8). In addition to that, applying the removal
action will reduce the number of actions that we need to consider
in future states.

The resulting state of each action is the quotient graph of G after
applying the action. (See Figure 3)

3|C| means the number of nodes in the graph C.



Figure 2: We cannot assign node 4 to any partition
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Figure 3: (Above) Quotient graph before action, (Below) Quo-

tient graph after the action of adding node with number 1 to
the blue partition.
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4.5 The Actual Cost

Every action on the level of the basic graph G, whether it was
changing the partition to which a node belong or removing it
from the graph, will correspond to an edge removal or addition
on the level of the quotient graph Q. This means that the actual
cost of the path between the current-state/quotient-graph and goal-
state/constraint-graph is the minimum graph edit distance between
them. Computing it, however, is NP-Hard [25].

4.6 The Eigenvalue Heuristic

Instead of using the graph edit distance, we use an O(n®) time
complexity heuristic that is based on the difference between the
eigenvalues of the Laplacian of the current-state quotient graph

and the constraint graph. The heuristic relies on the fact that ev-
ery two isomorphic graphs are also isospectral (i.e. have the same
eigenvalues for their Adjacency or Laplacian matrix). So as we get
closer to the goal we expect that the current quotient graph will be-
come closer to being isospectral with the constraint graph. Namely,
we use the Eigenvalue Method of computing graph similarity? de-
scribed in the work of Koutra et al. [9, 11].

The heuristic then becomes the similarity between the current
quotient graph Q and the wanted constraint graph C. Where the
similarity using this method takes values in the range [0, c0) with a
value of 0 meaning that the two graphs are completely similar (The
edit distance between them is 0) or increasingly dissimilar as the
value moves further from 0.

Not every two isospectral graphs are isomorphic and this was the
reason we are using the A-Star search instead of the greedy Best-
First search, i.e. to avoid being stuck at a local minimum at which
the quotient graph Q found is isospectral but not isomorphic to C.
For A-Star search to be optimal, i.e. guaranteed to find a solution,
the heuristic used must be admissible, meaning that its value is
always less than the actual cost from that evaluated state to the
final state.

In our case, the heuristic is, in general, monotonically decreasing
but with the values of the heuristic not always less than the actual
cost.

4.7 Coarsening

4.7.1 Main Idea. When the size of the basic graph G increases,
the number of actions will also increase. To reduce the number of
actions we can pre-process the graph G by putting its nodes into
groups and then treating every group as one node. More formally,
what we do is that we partition G into k partitions and the quotient
graph will then be the new G which we will call G’. The same
algorithm that we used to obtain the initial quotient graph can be
used here (See Figure 4). The actions this way become the removal
of a group of nodes or moving them between partitions.

4.7.2  On the Number of Groups to be Chosen. The value of k
has to be well chosen. It cannot be, for example less than or equal
to |C| and cannot be very close to the value of |C| so as to leave
some room for actions (in other words, a large enough search space
for a solution to be found). e.g. if k = |C| + 1 then upon finding
the initial state, every partition will have one node from G’ except
for one which will have 2 nodes. What this means is that only one
node can be moved between partitions or removed from G’ at any
time which might mean, in some cases, that a solution cannot be
found. The value of k should not be too close to |G| as well since
this would defy the point of coarsening in the first place. Therefore,
we want to choose k that is not too small that it makes the problem
unsolvable and not too large that we solve the problem at a higher
size of G’ than is necessary.

4.7.3  Incremental Coarsening. One idea we used was to try dif-
ferent values of k incrementally. We first start with a value close
to C then if a solution was not found® or a maximum number of
states were explored we increase k by d. Where choosing d to be as

4The more similar two graphs are, the smaller is the edit distance between them.
SIf G’ is small, then the search space will be small and this can be known quickly.
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Figure 4: (A) The Voronoi diagram, (B) After putting the cells
into 7 groups. (i.e. k = 7), (C) The dual graph of the Voronoi
diagram in A, (D) The quotient graph of the groups in B.

small as 1 or 2 means that the current coarsening will not be much
different from the next coarsening and therefore we cannot expect
much difference in the output either. d must then be large enough
to avoid that but not too large so as not to solve the problem in a
higher dimension when it is more easily solvable in a lower one.

We continue these increments until the value of k becomes equal
to or larger than |G|.

This idea is influenced by the coarsening step found in the Mul-
tilevel algorithm for graph partitioning [8] and its main advantage
is that it will allow us to handle large graphs as we handle smaller
ones with the natural differences in the amount of memory used
and the computations needed for the coarsening.

5 RESULTS

The worst case complexity of A-Star algorithm is O(b%) where d is
the length of the path to the solution and b is the branching factor
which is the average number of actions per state. The actions per
state is the collection of actions per partition of both neighboring
nodes removal and addition to the partition. In the best case, a
perfect heuristic will lead directly to the solution with a complexity
of O(d)

All the tables in this section share the following configurations:
Constraint graph C in Figure 5. Each graph G is a dual graph of a
Voronoi diagram like the graph in Figure 4. Each run with a dif-
ferent random graph G. Machine Specifications: Processor Intel(R)
Core(TM) i7-6500U CPU @ 2.50GHz.

5.1 Sensitivity to the Initial State

We found that the efficiency of the algorithm is reliant on the initial
partitioning which, in turn, is reliant on the graph G since the
algorithm through which we partition G is deterministic®. To verify
this sensitivity to the initial state we fixed C and generated G with
different seeds. Table 1 shows the results of this test. The graph C
that we chose is the chain of 8 nodes seen in Figure 5. Looking at
the Time column, we observe that while the STD and the maximum
are high in the two columns, the median is low.

In many combinatorial search problems, it is observed that when
a deterministic search algorithm is applied on several random in-
stances of a problem (or equivalently several initial states) the
algorithm runs exhibit a heavy-tailed distribution. This means that
any run has a small probability of taking exponentially longer time.
To solve this problem, we employed a restart policy as suggested
by Gomes et al. [6].

The restart policy we used is as follows: a small limit L is chosen
first, if the search exceeds this limit then the run is stopped, the
limit is increased by an amount D and the search is started again
with a new random instance (i.e. a new graph G). The intuition
is that the computational cost of a sequence of short runs will be
smaller than that of a single long run. We chose to set the limit on
the number of expanded nodes.

As suggested by Table 2, this made the algorithm less sensitive
to the initial state by bringing the times taken by the algorithm
runs closer to the median. The median increased due to the wasted
nodes expansions and time taken in the runs in which a limit was
exceeded.

Table 1: Testing sensitivity to initial state. Data obtained
from 100 runs.

Expanded Nodes Path Length Time (Secs)

Max 18386.00 11.00 163.83
Min 3.00 3.00 0.30
STD 1989.56 1.48 17.40
Avg 466.76 6.77 4.83
Median 66.00 7.00 1.34

Table 2: After using a Restart Policy, Initial Limit = 10 ,Limit
Increment = 50. Data obtained from 200 runs.

Expanded
Nodes (Last Path Length Total Time (Secs)
Run\Wasted\Total)

Max 179.00\350.00\437.00 12.00 43.46

Min 4.0010.00\4.00 4.00 0.29

STD 34.70\65.00\88.10 1.27 5.47

Avg 34.15\92.25\126.40 6.48 5.29

Median 21.00\100.00\106.00 6.00 3.48

®j.e. Kernel Clustering algorithm in [24]



5.2 Effect of Coarsening

As shown in Table 3, coarsening shortens the time needed by the
algorithm. The Restart Policy from Section 5.1 is used, Initial Limit
= 10, Limit Increment = 100. Note that the times shown in the table
include the time wasted in runs in which a limit was exceeded.

Table 3: Effect of coarsening. Data obtained from 100 runs. k
is the number of groups.

Time
No Coarsening k=30 k=20

Max 38.68 38.45 24.45
Min 0.61 0.32 0.20
STD 8.04 6.86 3.73
Avg 7.51 5.46 3.38
Median 4.68 3.00 2.25

5.3 Handling Inefficiency

We found it challenging to state concisely when does the constraint
graph C become hard to impose on G. We hope to explore this more
in the future. But in general, addition of edges to C can increase
its hardness especially if the nodes to which the edges were added
had a high degree. A constraint graph is especially hard to impose
if it’s maximal planar’.

Building on what we discussed in Section 4.7.2, the size of G’ (or G
in general) should be large enough to provide the required freedom
of actions. But also, increasing the size of G will increase the size
of the search space. Still, it’s inevitable to increase the size of G or
G’ when the size of the constraint graph and its topology requires
that. In these cases, some of the following techniques can be used.

5.3.1 Accepting Approximations. In applications where the iso-
morphism constraint can be softened, we can impose disjoint sub-
graphs of the constraint graph C on disjoint subgraphs of the basic
graph G. The result will be correct within every subgraph of G
but the adjacencies between the partitions that don’t belong to the
same subgraph of G might not match our initial constraint graph.

5.3.2  Online PCG. If the content is generated while the game
is running, as opposed to during its development, the PCG is called
Online [19]. The inefficiency we mentioned makes it challenging
to use this algorithm in Online PCG without some intervention
from the developers like only allowing the constraint graphs that
we know, before hand, will be easier to impose on C and possibly
also providing the seeds for the initial states that we found to be
suitable at the time of development (Offline).

5.3.3 Mixed Initiative PCG. Mixed Initiative PCG is a term that
applies to content generation tools or algorithms in which both
the generator and the human using it co-operate to create the con-
tent [12]. It’s possible to create a Mixed Initiative tool through
which the user (developer or player, based on ease of use and learn-
ing) can generate or import an embedded planar graph G (it has to
be embedded for the user to be able to see it and interact with it),

7 A maximal planar graph has the property that adding any more edges to it will result
in a nonplanar graph.

choose a proper subgraph of the graph G and impose a constraint
graph on it, then repeat that for the other subgraphs aided with
the ability to remove nodes from G in a way that supports the con-
straint imposing. Additionally, the tool might provide the user with
the option to pause the search at any time, then the best state/s (as
evaluated by the heuristic) is shown and the user can suggest the
next actions to be taken. The goal is to utilize the human ability
to find visual patterns. Also, through such a tool, the additional
constraints which we will discuss in Section 7 can be more easily
(and visually) defined. The main advantage, as we see it, will be
that the user will care mainly about the end result regardless of
what means were used to obtain it.

In addition to the above, in Section 7 we will introduce the idea
of utilizing the recursive nature of some problems in the context of
political maps.

6 SHOWCASE

In each showecase the constraint graph C is on the right and the
resulting partitioning on a Voronoi diagram graph is on the left.
White cells represent removed nodes.

Figure 5: Showcase 1

Figure 6: Showcase 2



Figure 7: Showcase 3

Figure 9: Showcase 5. G is the interior of the island. The blue
cells (water) are not part of G.

7 APPLICATIONS

7.1 General Requirements
No matter what the application is, the following are needed:
e A graph G on which the partitioning to be applied.
o A graph C which describes the required adjacency between
the partitions.
o (If coarsening is applied) The value for k and if incremental
coarsening is used the increment d.

(If the Restart Policy is used) The initial limit L and the
limit increment D.

A goal test, given a state returns whether it’s a solution.
A heuristic.

Whether node removal is allowed.

Any additional constraints (see next).

7.2 Using the Isomorphism Mapping

When we have a solution, we can use the isomorphism mapping to
know which partitions were mapped to which nodes in C, knowing
that we can dictate beforehand that the node i in C is going to have a
property P;. This allows us to adapt the results from the algorithm
to our application. For example, in Figure 11 after the solution
on the left were found we can proceed and use the isomorphism
mapping between the orange partition and Node 1 and give the
orange partition some properties that were assigned to Node 1
previously like that Node 1 correspond to a desert in the map.

7.3 Changes Needed When Additional
Constraints are Added

In the case of political maps, we have no constraints on the solution
other than isomorphism, and so the Eigenvalue Method described
above is sufficient. However, the heuristic and the goal test need to
be modified in other applications that require additional constraints.

The reason we need to do that when we have different require-
ments/goal is that updating the goal test only can result in a correct
solution but the heuristic will not be guiding us toward it. Also,
we cannot suffice ourselves with only updating the heuristic. The
reason for this is that although the heuristic is steering us toward
the properties of the solution we want, the final solution is not
guaranteed to have these properties. In particular, if the number of
actions from the start to the end is not large enough, the heuristic
won’t have enough actions through which it can steer us. An exam-
ple of that is if the initial state turned out to be a solution. So, we
must always update the heuristic and the goal test when we add
new constraints on the solution.

As of now, our system has the isomorphism goal test and the
Eigenvalue heuristic implemented. Next, we will describe some
important constraints that we can add to our system, each with a
possible implementation of its goal test only. Afterward, in each
application, we will mention which constraints that application
requires.

7.4 Possible Constraints

7.4.1  Cell-In-Partition Constraint.
Requiring certain nodes in G to end up in certain partitions.

7.4.2  Minimum-Partition-Size Constraint.
Requiring that the size of any partition in the solution is at least
some number M.The number M must be set with care so that this
partition doesn’t starve the other partitions. The goal test could
be implemented by checking the size of the minimal size partition
after an isomorphism was found.

7.4.3  Maximum-Removed-Nodes-Size Constraint.
Requiring that the number of removed nodes is at most R. This
constraint has a similar implementation of the goal test as Minimum-
Partition-Size.



Figure 10: (Left) The graph we had in mind, we sought the
nodes 3 and 4 to be the interior and 0,1 and 2 to be the exte-
rior, (Right) The graph embedding we actually got.

7.4.4  Property-Percentage Constraint.
First properties are given to the nodes in C then we require that
those nodes in C which have a certain property PROP have at least
a percentage of PERC of the nodes in G.To implement the goal test
we Use the isomorphism mapping to get those partitions that have
the wanted property and we find the percentage of the nodes in
these partitions to the total number of nodes in G.
7.4.5 Mapping Constraint.

Requiring that certain partitions in the initial state will end up
eventually mapped to certain nodes in C. We can implement the
goal test by checking after an isomorphism is found whether the
chosen partitions were actually mapped to the required nodes in C.
If all the nodes in one partition were added to the Cell-In-Partition
constraint then we get this same effect of this constraint. Yet another
alternative is to use a Labeled Graph Isomorphism algorithm. A
labeled graph is a graph in which nodes and edges have labels. The
Labeled Graph Isomorphism algorithm additionally requires the
nodes and edges with the same label to be mapped to each other.
The Non-Labeled Graph Isomorphism algorithm can be seen as a
special case of this algorithm in which all nodes and edges have
the same label. Mapping-Constraint can be implemented by given
the same label to the partition and the node in C to which it should
be mapped.

7.5 One Graph, Many Embeddings

For one graph C, many partitions of G are isomorphic to C. Fig-
ures 10 and 11 shed some light on this issue. A possible way to en-
force an embedding is through using Mapping or Cell-In-Partition
constraints.

7.6 Political Maps

Many strategy games are based on or feature a political map like
Risk, Crusader Kings 2, Settlers of Catan, Pandemic, Civilization VI
and Total War series to name a few. In some of the games above,
the player can’t move or capture a region unless it’s adjacent to a
region he already captured. An important strategic element in these
games is the amount of edges that a region has to the neighboring
regions as this will affect how easy it is to defend/attack/move-to
the region and the number of regions that would become capture-
able next after taking this region. In other games, there are other
considerations that are affected by adjacency of the regions such
as spread of infections/city expansion/economical bonuses.

Figure 11: (Right) The solution we had using an isomor-
phism only goal test. (Left) Same as one on right but using
the isomorphism mapping we gave those partitions mapped
to EXTERIOR nodes a gray color and those mapped to INTE-
RIOR nodes a yellow color. White nodes are removed nodes

The generation of these political maps were our first motivation and
it was the reason we found ourselves discussing graph isomorphism
eventually as we observed that the current maps generators lack
this constraint of adjacency. Another motivation is that by building
a generator that imposes an adjacency/graph constraint we open
the path to further work in the future on graph generators that are
suitable for strategy games. By allowing the content we want to
generate to be controlled through some parameters we can in turn
generate these parameters.

7.6.1 Utilizing the Recursive Property.

One feature we found in some of the games above was the recursive
nature of the maps, for example, in Risk the map is divided to con-
tinents and those continents are then in turn divided to provinces
(see Figure 12), in CK2 the map is divided among many factions and
these factions in turn control multiple provinces. This motivated us
to add this feature to our system and so a constraint graph Cj4 is
to be provided for each of the nodes in the initial constraint graph
Ci, where i is the level of generation, there is a limit though on
how deep the nested graph is since eventually the number of nodes
in a partition will become too few to satisfy its internal constraint
graph.

It is important to note that this recursive property can be used to
fight the current inefficiency mentioned in the Results section. For
example, when examining the graph of the game Risk (see Figure 12),
we find that even though the graph as a whole is complex, the
graphs describing the adjacency between the continents is simple
and small and so are the graphs of the territories in each of the
continents separately.

Remaining is to mention that the algorithm, as it stands, will
not necessarily respect the inter-continental edges. For example,
looking at the graph in Figure 12, there are multiple edges between
nodes from Africa and Europe but they will be replaced by only
one abstract edge in the C; graph which represent that the two
continent are connected. That edge in C; is satisfied if at least two
partitions at the i + 1 level, each belonging to one of the continents,
were adjacent. Because of that, utilizing the recursive structure of
the map is only an approximation.
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Figure 12: Graph of connections between territories on the
Risk game board [5].

Figure 13: The white nodes are removed nodes, note how re-
moving nodes was one way to satisfy the the edge between
nodes 4 and 5 in the graph.

7.6.2  Meaning of Node Removal.

In some cases, as we described earlier, the graph C would be hard
or impossible to impose on G without node removal. But this poses
the problem of what should we do with the removed nodes as they
might mean a gap in, for example, the underlying Voronoi diagram
or rectangular grid. Our justification for using node removal was
that these nodes could be given a semantic that is based on the
domain in which we are applying the algorithm. For example, a
removed node might mean a mountain that blocks countries in
political maps or walls in a cave, or any meaning that explains its
unreachability or unavailability. An illustrating example can be
seen in Figure 13. We can use the Cells-In-Partition constraint to
ensure that some nodes that are of some economical, religious, etc
importance or that are capitals will be in the right partitions.

7.7 Terrain Distribution

We assign terrain properties to the partitions then using the map-
ping we get through the isomorphism we can assign some parti-
tions as sea, desert, mountain, hills, etc. We might as well use the
Property-Percentage constraint to require for example that 60% of
the map is made of water. Using isomorphism in terrain distribution
allow us to express requirements of placing deserts for example
beside villages but not beside grass lands.

7.8 Further Control

Here we present two ideas to enable the users to further control the
algorithm in addition to the constraints mentioned earlier. We will
illustrate them by solving the problem of enforcing that an ocean
should exist between some of the continents in Figure 12. The first
idea is to apply the changes on the constraint graph. For example,
in our case we include a node in the continents graph to represent
an ocean and the nodes of all the continents which are linked to
this ocean will have an edge with it. After the partitioning is found,
the isomorphism mapping from Section 7.2 can be used to find
the partition mapped to this ocean node. The second approach is a
post-generation process in which we find the nodes in G that lies on
the borders between the continents between which an ocean must
exist. The general idea is to carve from the partitions the nodes we
want. We also used this idea in the example in Figure 16. The main
disadvantage of the first approach is that it increases the search
space size but its advantage over the second is that we guarantee
that enough nodes were assigned for our purpose whereas we might
resort to making the graph G larger in the second approach to be
able to safely reserve portions of it.

7.9 Converting a Mission Graph to a Game
Space

As we mention in the Section 2, generating game levels can be
accomplished by converting a Mission Graph describing what the
player is going to do to a game space where that will take place. In
the work by Dormans [4], the missions are generated using graph
grammars which operate on graph nodes and edges instead of
strings and the game space is then generated using Shape Grammers.
Furthermore, in the work by Van der Linden et al. [22], levels for the
game Dwarf Quest® are generated by first embedding the Mission
Graph into a 2D grid and then placing a room in every cell where
a graph node was placed. Another work which handles the same
general problem of converting an abstract graph into a game space
is [14] who uses a Force-Based graph drawing on the graph. For
each graph node, points are created to represent a room (points
arranged as a hexagonal, rectangle or an irregular polygon) as
in Figure 14 and for every edge, points are created to represent
corridors. After that, points are also created for the empty spaces.
Finally, a Voronoi diagram is generated using all these points.

What we are aiming to do is to partition a graph such that the
adjacency between the partitions is described by the constraint
graph. If we regard the Mission Graph mentioned previously as
our constraint graph, then our work shares a similar aim as these
approaches above.

The last approach is the closest to ours among the approaches
described above, but also it has an interesting relation to our al-
gorithm. Where as we start with generating the Voronoi diagram
and then impose the constraint graph on its graph, the constraint
graph, in this approach, is first drawn and then the Voronoi diagram
is generated. This also shows a way in which graph drawing and
graph partitioning with isomorphism constraint are linked. Also,
in the last approach, the nodes in the constraint graph are mapped
to rooms (which can vary in size and shape based on the points

8(Wild Card Games) www.dwarfquestgame.com/



Figure 14: Reproduced with the owner (naughtty) permis-

sion’.

Figure 15: The result of our algorithm are whole regions.

Figure 16: We can shape these regions. e.g. here, we shrank
each region from all directions and then created paths be-
tween them. This example could be seen as a start for dun-
geon generation.

creation step) while in ours the nodes are mapped to whole re-
gions/partitions of the basic graph. Each region can then be carved
by node removal to the shape we want. (See Figure 15 and Fig-
ure 16) Alternatively, we can use the regions we found as borders

9 A snapshot from www.youtube.com/watch?v=RAtdFKigs34&feature=youtu.be

inside which we can place other types of content. We can then link
contents in the regions between which an edge exists in the con-
straint graph. To obtain these borders, we can merge the Voronoi
cells belonging to the same partition or treat the dual graph of the
Voronoi diagram as a polygon and pick the edges that are on the
borders of the region. It must be noted, though, that the obtained
polygons in the two cases might be concave.

7.10 Linking a Mission Graph to a Game Space

We don’t need to create the game space in the process, due to the
general nature of our algorithm, we can divide an already created
game space using the Mission Graph given that the game space has
a graph representation. We assume that the relation between the
Mission Graph and the game space is one-to-many, i.e. one task is
linked to multiple nodes in the game space graph.

Using our algorithm two problems might appear, the first is that
there is no guarantee that the node corresponding to the starting
task will actually be mapped to the region in the game space where
the player is ought to start (Same applies to the last task and the final
region of the game space). To enforce that, a Mapping-Constraint
might be used.

Secondly, the transition between each task in the Mission Graph
is sometimes realized through an actual boundary in the game space
like a gate, a portal or a corridor. The partitions we acquire has no
regard to these boundaries. This is true if the graph representation
of the game space is fine-grained (e.g. raw rectangular or Voronoi
cells) as opposed to a representation where every logical region
in the game context (e.g. a room) is a one node. A more coarse
representation might be acquired first to evade this problem. Alter-
natively, we may add a constraint that all the entry/exit points of a
region must end up in the same partition (but then, as we mentioned
in Section 7.3, the heuristic and the goal test must be updated). We
can, as well, satisfy this constraint as a post-partitioning step where
we assign every logical region to the partition that has, for example,
the largest portion of its nodes.

Finally, until now we have been using a deterministic algorithm
to obtain the initial state and different graphs G were used to intro-
duce variation. If the same graph G can’t be changed (as might be
the case for the game space graph) we can instead use a randomized
algorithm to obtain the initial state. This can be an algorithm akin
to K-Means clustering where |C| nodes are chosen at random to be
the seeds of the partitions. The remaining nodes are then added to
the partition whose seed is the closest. This algorithm will produce
partitions that have more irregular shapes than the one we have
been using. Furthermore, note that new random seeds will be used
in every run when the Restart Policy (Discussed in Section 5.1) is
used.



8 SUMMARY AND FUTURE WORK

To summarize, given a planar graph G we presented an algorithm to
partition it such that the quotient graph is isomorphic to a constraint
graph C. We used the A-Star search algorithm with a heuristic that
is based on the isospectrality of isomorphic graphs. To handle the
case when the basic graph G is large (which increases the size of the
search space), we introduced a coarsening step which will partition
G into a new graph G’ that is smaller in size. We also discussed why
choosing an inappropriate new size might over-limit the search
space (when new size is too small) or require more computations
than necessary (when new size is too big). After that we showed
statistics that suggest the sensitivity of the algorithm to the initial
state/partitioning. To handle this, we employed a Restart Policy
which reduced the algorithm unpredictability.

To handle the inefficiency when a constraint graph is hard to impose,
we suggested that any recursive property or acceptable approxi-
mations in the desired application can be utilized. Additionally, we
illustrated how a mixed-initiative tool can shift the focus of its users
to the end result regardless of what computations-saving means
they used to acquire it. When deployed as an Online PCG, extra
care must be taken to allow only the constraint graphs and the
initial states which we know to be solvable efficiently. Furthermore,
we suggested more constraints that can tune the output to our
needs and justified why both the heuristic and the goal test must be
updated when any additional constraints such as these are added.
Finally, we showed multiple applications to the algorithm in PCG
which included: the generation of political maps, terrain distribu-
tion and converting/linking a Mission Graph to a game space. We
also showed how can the additional constraints we presented aid
in achieving them.

In the future, we wish to work on making the algorithm more
efficient. Furthermore, as clear from the Section 7.4, implementing
the heuristics for the additional constraints is going to allow us
to test and expand the possible applications we speculated above.
We also aim to gain a more solid understanding of what makes a
constraint graph hard to impose. This, we believe, will allow us to
write a generator that generates random constraint graphs that are
efficient to impose. We wish to explore other restart policies than
the one we used. Finally, we want to explore other heuristics that
might perform better than the current one.
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