
Procedural Game Level Design to Trigger Spatial Exploration
Pedro Acevedo
Purdue University

West Lafayette, U.S.A.
paceved@purdue.edu

Minsoo Choi
Purdue University

West Lafayette, U.S.A.
choi714@purdue.edu

Huimin Liu
Purdue University

West Lafayette, U.S.A.
liu2833@purdue.edu

Dominic Kao
Purdue University

West Lafayette, U.S.A.
kaod@purdue.edu

Christos Mousas
Purdue University

West Lafayette, U.S.A.
cmousas@purdue.edu

ABSTRACT
Synthesizing game levels that evoke players’ curiosity, driving them
to explore different level parts, is time-consuming and tedious. Typ-
ically, game level designers manually perform this synthesis using
trial and error. In this paper, we propose a method with which to
replace this manual, time-consuming process. We benefited from
recent work that had proposed game level design patterns to evoke
curiosity, and we propose an approach to automatically synthesiz-
ing game levels in order to encourage players to pursue designer-
specified exploration goals. We started by creating a dataset of
level assets, based on the four design patterns that evoke curiosity-
driven exploration in games (reaching extreme points, resolving
visual obstructions, out-of-place objects, and understanding spatial
connections). We annotated the assets in our dataset with spatial ex-
ploration measurements (the time players took to explore an asset
over their total time spent in the game level). We then formulated
game level design as an optimization problem, encoding both spatial
exploration (mean spatial exploration, spatial exploration variance,
and spatial exploration distribution) and game level design (occu-
pied area, adjacent penalty, and height distribution) decisions. Then,
we solved this problem by implementing a reversible-jump Markov
chain Monte Carlo method. We demonstrate our method’s ability to
synthesize game level variations with different spatial exploration
and level design decisions. Finally, a user study showed that our
approach can automatically synthesize game levels, encouraging a
certain amount of spatial exploration by players.
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1 INTRODUCTION
When designing a game level, a designer should encounter various
factors that impact players’ gameplay behavior, including players’
“curiosity” about exploring the level and its content [28, 29]. Curios-
ity, from a psychological perspective, can be regarded as uncertainty
and preferences regarding “information gaps” between the known
and unknown [29]. In games, curiosity denotes a player’s interest

in confronting uncertainty and tolerating information gaps or a
lack of context. This interest enables the map exploration process.

Due to insufficient knowledge regarding game level patterns that
trigger curiosity, game level designers use their intuition to design
levels that encourage this behavior among players [6, 22, 35]. A
recent study by Gómez-Maureira and Kniestedt [8] analyzed the
design of games that players associate with the five dimensions of
curiosity (joyous exploration, deprivation sensitivity, stress tolerance,
social curiosity, and thrill seeking) [19] and identified design patterns
commonly used in games to encourage spatial exploration. Then,
based on the patterns they identified, Gómez-Maureira et al. [9]
empirically studied how such level design patterns influence spatial
exploration in a 3D, open-world game. Such studies provide an
evidence-based explanation of what game level design patterns or
components evoke a desire to explore and unlock the potential for
procedural generation to induce spatial exploration in some game
parts.

However, while procedural game level design’s potential to en-
courage the pursuit of a certain spatial exploration target is appeal-
ing, designing such levels remains tedious, time-consuming, and
challenging—heavily relying on a game level designer’s individ-
ual perception of this concept. Although some game developers
incorporate narrative elements that enable players to pursue the
activities they enjoy the most [11], To et al. [43] have shown that let-
ting players encounter game content as the result of their curiosity
creates more memorable and enjoyable game experiences.

Inspired by research on procedural game level design [5, 18, 20,
34] and, more specifically, methods favoring experience-driven pro-
cedural content generation [33, 38, 51], as well as curiosity in games
[6, 8, 9, 22, 35, 43], we propose an optimization-based approach to
procedurally generating game levels that encourage spatial explo-
ration. Our method automatically synthesizes open-world game
levels (see Figure 1 for an example of a synthesized open-world
game level) that encourage players to pursue designer-specified spa-
tial exploration patterns. We formulated spatial-exploration based
level design as an optimization problem; therefore, our system auto-
matically and quickly synthesizes game levels, balancing different
design considerations. Thus, game level designers can use these
synthesized levels as a basis for further refinement.

To synthesize game levels for which a designer can control both
spatial exploration and level design, we formulated a method as a
set of cost terms that encode both spatial exploration (mean spatial
exploration, spatial exploration variance, and spatial exploration
distribution) and game level design (occupied area, adjacent penalty,
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Figure 1: Example stills of the open-world game level that
we synthesized based on our proposed procedural spatial ex-
ploration level design method.

and height distribution) decisions. We assigned all cost terms to
a total cost function, which we solved using a reversible-jump
Markov chain Monte Carlo method [10]. Based on our approach,
we expect that game level designers can easily specify the spatial
exploration sought from players when completing a synthesized
level, as we explicitly quantified such design decisions as cost terms
in our method.

In addition to presenting our method in this paper, we also con-
ducted a user study to evaluate our approach. Specifically, we ex-
plored how study participants explored game levels with different
spatial exploration targets (low, medium, and high spatial explo-
ration). We found that our system could synthesize game levels
that influenced participants’ spatial exploration behavior.

The remainder of this paper is organized into the following sec-
tions. In Section 2, we describe related work on procedural game
level design, and curiosity and spatial exploration in games. In
Section 3, we present our preliminary remarks on the annotation
and representation of our level assets. In Section 4, we present our
formulation and optimization of spatial exploration in game level
design. In Section 5, we describe our study evaluating procedurally
generated game levels with different spatial exploration targets,
and we discuss our findings and limitations. Finally, we draw con-
clusions from our project and present avenues for future work in
Section 6.

2 RELATEDWORK
Procedural ContentGeneration. Procedural content generation

refers to methods used to create content for games algorithmically,
as opposed to manually. Procedural content generation combines
human-designed assets and algorithms with computer-generated
randomness. Such techniques have been used in the games industry
for nearly 40 years. The academic community has actively focused
on such techniques for over a decade. Procedural generation meth-
ods have been applied to game design and development, from 2D
platform games [5] to first-person shooting games [3] and, more
recently, to exergames.

Unsurprisingly, given procedural generation techniques’ exten-
sive history of use in the industry, many algorithmic methods have
been developed and used, including generative grammars, con-
straint solving, and design space searches [36]. Procedural content
generation provides two main game design advantages: (1) unlim-
ited content and variation for each play session and (2) the ability
to create unique experiences in a game. For unlimited content and
variation, we found that games such as Minecraft1 use procedural

1https://en.wikipedia.org/wiki/Minecraft

content generation to create virtual worlds, while Fortnite Battle
Royale2 uses randomness and content variation in-game.

Researchers have developed numerous procedural content gen-
eration methods that address a wide range of problems [45]. To-
gelius et al. [46] defined various distinctions between different
procedural content generation approaches. Our project focuses on
search-based procedural generation through optimization [46] and
experience-driven procedural design [51], as we allow the proce-
dural generation process to be guided through the evaluation of
system-proposed designs. According to previously published work,
such evaluations can be based on game developers’ design decisions
[2] or players [12] through the implementation of various compu-
tational models of preference [25, 27], game simulations [1, 44], or
cost functions [26, 40].

In most cases of procedural game content generation, develop-
ers mainly focus on a game level itself. According to previously
published work [47], high randomness and variation across game
levels often provide unique experiences since, during gameplay,
various unexpected interactions between the player and the game
can occur. However, procedural content generation is not limited
to playable content, such as game levels. It has been used to allow
players to create their own story evolution [41, 42], providing play-
ers a more customized interaction with games. Such approaches
allow for a wide range of actions, interactions, and strategies that a
game developer might not have planned or expected [41]. Moreover,
such methods have also been used to design various game assets.
For example, SpeedTree3 software provides natural-looking trees,
which are common assets in games.

Numerous researchers have published papers on synthesizing
virtual worlds for games. Shi et al. [37] and Jenning-Teats et al.
[16] developed a rules-based approach that adjusts game difficulty
during runtime, based on a player’s performance. In another ex-
ample, Hooshyar et al. [14] developed a data-driven method that
considered students’ skills in developing a customized educational
game. Xie et al. [49] procedurally generated game levels for training
programs, and Liu et al. [30] synthesized racket sports exergames to
encourage the pursuit of a user-specified training goal. For more de-
tails regarding procedural content creation in games, see the survey
paper by Hendrikx et al. [13]. Similar to Xie et al. [49] and Liu et al.
[30], we study the procedural generation of game levels by combin-
ing game level design patterns that encourage curiosity and game
level design decisions. In contrast to the aforementioned papers,
our work focuses on a player’s spatial exploration in procedural
game generation.

Curiosity in Games. Researchers consider games and virtual
worlds an ideal medium for studying player curiosity; however,
the importance of curiosity is not yet evident [9, 50]. Researchers
have tried to approach player curiosity from different perspectives.
Costikyan [6] defined curiosity as a player’s motivation to engage
in a game, Klimmt [22] described it as the reason why players
choose to play games, and Schell [35] described it as the way game
designers can make players question themselves about a game’s
design. In this paper, we consider players’ curiosity to be their
desire to explore a game level and, more specifically, a level’s assets

2https://en.wikipedia.org/wiki/Fortnite_Battle_Royale
3https://store.speedtree.com/
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(each asset belongs to a different level design pattern). According
to To et al. [43], spatial exploration in a game or virtual world can
result from player actions or conceptually by resolving knowledge
gaps. Phan et al. [32] also described spatial exploration as a form of
creative expression that contributes to a player’s satisfaction with
a game.

The current study aims to use knowledge from prior research
on game level design patterns that evoke curiosity in a procedural
game level design framework. Researchers have previously studied
level design patterns [15, 21, 39]. Although various approaches can
be applied to the game design process, they do not all successfully
evoke curiosity among players. Moreover, little research has exam-
ined using such design patterns in procedural design. To et al. [43]
provided generalizable game design guidelines by exploring how
designers can influence players’ curiosity through the curiosity
model by Kreitler et al. [23], which distinguishes between different
curiosity triggers. These guidelines provide designers with various
possible design decisions to induce player curiosity. To further ex-
plain how designers can induce player curiosity, Gómez-Maureira
and Kniestedt [8] analyzed game designs using the five dimensions
of the curiosity scale [19]. They identified the design patterns in
games that evoke spatial exploration and social interaction. In their
follow-up empirical study, Gómez-Maureira et al. [9] showed how
the game level design patterns they identified influence curiosity-
driven exploration in a 3D, open-world game.

Through the current project, we aim to complement previous
work on game level design patterns that evoke curiosity-driven
exploration by implementing a method that encounters such game
level design patterns and procedurally generating game levels that
encourage certain spatial exploration behavior among players. We
consider our project as an initial step in applying the theoretical
knowledge obtained by To et al. [43], Gómez-Maureira and Kni-
estedt [8], and Gómez-Maureira et al. [9] to develop a method of
procedurally generating game levels that trigger a certain curios-
ity behavior (i.e., spatial exploration) among players. Our results
could provide the research community with valuable insights re-
garding experience-driven design for spatial exploration; therefore,
researchers could build on our results to design more advanced
approaches to evoke curiosity-driven exploration in games.

3 PRELIMINARY REMARKS
As a preliminary step of our research, we created a dataset of game
level assets that we later annotated, based on spatial exploration.
In the following subsections, we describe our methodology for
preparing, annotating, and representing these assets.

3.1 Game Level Assets
We started our project by defining a list of assets (or game level
objects) that can attract a player’s attention during open-world level
exploration. Before creating a dataset of level assets, we considered
the four design patterns for curiosity to determine a player’s spatial
exploration, as defined by Gómez-Maureira and Kniestedt [8]:

• Reaching Extreme Points (EXP): Games that encourage
exploration often feature locations considerably higher than
the rest of the game environment.

• Resolving Visual Obstructions (OBS): Parts of a game
environment can be deliberately obscured to motivate explo-
ration.
• Out-of-Place (OOP): Out-of-place elements are game ob-
jects that stand out in the context in which they are placed.
• Understanding Spatial Connections (SPC): Games that
allow players to navigate through an environment might
feature complex, interconnected paths.

Based on these four categories, we created a dataset of 32 as-
sets (six for EXP, seven for OBS, 12 for OOP, and seven for SPC).
Each corresponds to a different design pattern. We provide images
and additional descriptions of all the game level assets we used as
supplementary materials.

3.2 Game Level Asset Annotation
During our annotation step, we annotated all 32 game assets. We
assigned spatial exploration values to characterize each game asset.
These spatial exploration values correspond to players’ total time
spent exploring each asset. We developed the following approaches
to collecting and assigning such data to each game level asset. First,
we created short game levels in the Unity game engine, where
we assigned a single asset to each game level. Each game level
used an 8×8 grid size. Each grid cell was 25×25 Unity units in size.
Depending on the (grid) size that characterized each asset, we placed
each game level asset at the center of an 8×8 grid or the upper-
right cell (the [5, 5] cell; [0, 0] is the bottom left corner of the 2D
grid). We chose an 8×8 grid since we realized, during a preliminary
annotation process, that this grid size provides sufficient space for
a player to move around and explore a game level while (given the
use of only one asset) providing the feeling of an open-world level.
We show a few single-asset game levels used in our annotation
process in Figure 2.

Figure 2: Example single-asset game levels used in our anno-
tation process.

After designing all 32 game levels and receiving approval from
our university’s Institutional Review Board (IRB) for this part of our
preliminary research, we asked both undergraduate and graduate
students from our department to volunteer to play all of our game
levels. We collected spatial exploration data: how much time (in
seconds) a player spent inside each cell of the examined asset over
the total time they spent in the level. We considered the spatial
exploration of each asset by cell, rather than treating each level as a
single entity, because we noticed that some parts of an asset might
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trigger more spatial exploration behavior among participants than
other parts of the same asset.

In total, we recruited 13 participants (eight male, age:M = 26.87,
SD = 4.15; five female, age: M = 23.60, SD = 2.70). Three partici-
pants indicated that they spent less than an hour per week playing
games, while four played one to two hours per week, two played
two to five hours per week, two played five to 10 hours per week,
and two played more than 10 hours per week. Two participants
characterized themselves as novice players, five as casual players,
and six as core players. After screening our data, we noticed that
the data for one of our participants had not been recorded properly;
therefore, we excluded one participant and annotated our game
level assets using data provided by only 12 participants. Based on
previously published work [30, 49], and given the variability among
participants, we considered 12 participants sufficient to provide
reliable data with which to annotate our game level assets.

For the annotation process, we asked participants to play all
game levels. Each game level lasted 100 seconds (a counter started
once a player began a level and froze after 100 seconds). All game
levels were played according to the Latin square [48] balancing
method. Based on this method, for each asset, we computed the
average time that all participants spent inside each cell over their
total gameplay time (100 seconds); therefore, for each cell of each
asset, we obtained a spatial exploration value ∈ [0, 1]. Further
details about spatial exploration for each asset are provided in the
supplementary material.

3.3 Game Level Asset Representation
The final step of our preliminary research was representing each
game level asset. Because our procedural game level design method
considers spatial exploration and some level design characteristics,
we represented each game level asset ai as ai = ⟨ℰ (ai ),ℋ(ai )⟩.
ℰ (ai ) denotes the spatial exploration value of each grid cell of asset
ai , computed based on the methodology mentioned in Section 3.2,
represented as ℰ (ai ) = [ε1,1 (ai ), ..., εy,z (ai )].ℋ(ai ) is a 2D array
that encodes an asset’s height information. Specifically, each cell of
ℋ(ai ) represents the highest point (height information) for asset ai ,
represented asℋ(ai ) = [h1,1 (ai ), ...,hy,z (ai )]. For representation
efficiency, we assigned height values as the normalized (∈ [0, 1])
height computed through processing all the game level assets in
our dataset. (y, z) denotes the size of an asset in terms of grid cells,
and the grid ℰ (ai ) is equal toℋ(ai ).

4 PROBLEM FORMULATION AND
OPTIMIZATION

Let L (m × n in size) denote the whole grid map we used to synthe-
size a game level and information about the level’s configuration.
We represent a level (grid map) as a 2D array: L = [l1,1, ..., lm,n].
We synthesized game level L by placing various game assets, A =
[a1,a2, ...,an], that are characterized by different spatial explo-
ration onto L. The properties of each asset ai are described in
Section 3.3. We evaluated the quality of the generated level L using
a total cost function, CTotal (L):

CTotal (L) = wT
ExpCExp +wT

LevelCLevel. (1)

where CExp = [CM
Exp,C

V
Exp,C

D
Exp] is a vector of spatial exploration

cost and wExp = [wM
Exp,w

V
Exp,w

D
Exp] is a vector of weights. CM

Exp,
CVExp, andC

D
Exp encode our spatial exploration considerations. Specif-

ically, CM
Exp denotes the mean spatial exploration of level L, CVExp

denotes the spatial exploration variance in the level, and withCD
Exp

denotes the spatial exploration distribution in level L. CLevel =
[COA

Level,C
AP
Level,C

HD
Level] is a vector of level design cost terms, and

wLevel = [wOA
Level,w

AP
Level,w

HD
Level] is a vector of weights.C

OA
Level,C

AP
Level,

and CHD
Level encode our level design considerations: COA

Level denotes
the occupied area ratio between grid cells occupied by asset ai over
the total number of grid cells in level L,CAP

Level denotes the adjacent
penalty cost that prevents two similar game level assets’ placement
next to one another, andCHD

Level represents the height distribution of
asset ai in the game level L. We provide details for each cost term
in the following subsections.

4.1 Spatial Exploration Costs
We used three cost terms to control spatial exploration in a syn-
thesized game level L: mean spatial exploration, spatial exploration
variance, and spatial exploration distribution. We describe all spatial
exploration costs below.

Mean Spatial Exploration Cost. We synthesized a game level
by composing an |A| number of ai level assets placed on our grid
map.We used themean spatial exploration cost term to compute the
difference between a designer-requested mean spatial exploration
target value and the mean spatial exploration of level L:

CM
Exp (L) =

*
,

1
|A|

∑
ai

1
|ℰ (ai ) |

∑
εs,t

εs,t (ai ) − ρM +
-

2

, (2)

where εs,t (ai ) denotes the spatial exploration value of each cell
asset ai . |A| and |ℰ (ai ) | return the number of game assets and
the cells that each game level asset occupies in L, respectively.
Additionally, ρM denotes the designer-defined mean target value
of spatial exploration. For example, if we assigned a low ρM target
value, our system would synthesize a game level characterized by
low spatial exploration.

Spatial Exploration Variance Cost. We developed the spatial
exploration variance cost term to compare the spatial exploration
variance in game level L with designer-defined target spatial explo-
ration variance. We represented this cost as:

CVExp (L) =
������

1
|A|

∑
ai

1
|ℰ (ai ) |

∑
εs,t

(
εs,t (ai ) − ℰ̄

)2
− ρV

������
, (3)

where ℰ̄ denotes the mean spatial exploration from the generated
game level L and ρV represents the user-defined target spatial
exploration variance that the optimization process should introduce
in the synthesized game level L. For example, if we assigned a high
ρV target value, the synthesized game level would likely comprise
assets covering the whole spectrum of spatial exploration assets in
our dataset.
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Spatial ExplorationDistributionCost. Wedeveloped the spa-
tial exploration distribution cost term to compare the spatial explo-
ration distribution across synthesized game level L. Specifically,
we provided a level designer with the ability to create spatial ex-
ploration distribution pattern D, equal in size to L, which encodes
spatial exploration values, such as ℰ (D) = [ε1,1 (D), ..., εm,n (D)],
and to use it as an input in order to direct assets’ placement on a syn-
thesized level. We provide examples of different spatial exploration
distribution patterns and synthesized game levels in Figure 3. This
cost computes the difference between the spatial exploration as-
signed at each cell of synthesized game level L and designer-defined
spatial exploration distribution. We applied a Gaussian model to
our CD

Exp cost term to penalize deviation and large variation from
the desired targets. Specifically, we defined the spatial exploration
distribution cost as:

CD
Exp (L) = 1 − exp *

,
−

1
2σ 2

1
|L|

∑
li, j

(
E (li, j ) − εi, j (D)

)2+
-
, (4)

where E (li, j ) returns the spatial exploration value of map cell li, j ,
εi, j (D) returns the spatial exploration of input distribution patterns
D, and σ controls the spread of the Gaussian penalty function,
which we set to σ = 3.00 through trial testing.

(a) (b) (c)

Figure 3: A level designer can provide input into spatial ex-
ploration distribution patterns, and our system synthesizes
a level by following a spatial exploration distribution input.
(a) Input spatial exploration distribution, (b) resulted spatial
distribution, and (c) synthesized game level.

4.2 Level Design Cost
We implemented three cost terms to control level design: occupied
area, adjacent penalty, and height pattern. The following subsections
explain each of these costs.

Occupied Area Cost. We implemented the occupied area cost
term to control the ratio between cells li, j of level L occupied by
assets ai compared to the total number of cells in level L. This cost
enables level designers to control how crowded synthesized level L
is with assets. We defined the occupied area cost term as:

COA
Level (L) =

*
,

1
|L|

∑
li, j

Γ(li, j ) − ρOA+
-

2

, (5)

where Γ(li, j ) returns 1 if asset ai occupies cell li, j of a game level;
otherwise, it returns 0. ρOA ∈ [0, 1] denotes the designer-defined
target value. If we set a high target value to ρOA, asset ai would
occupy most grid cells of the synthesized game level; if we set a low
target value to ρOA, fewer assets would appear in the synthesized
game level.

Adjacent Penalty Cost. We implemented the adjacent penalty
cost term to prevent the system from synthesizing “monotonic”
game levels by repeating the same asset next to other instances of
that asset. We defined the adjacent penalty cost as:

CAP
Level (L) =

*
,

1
|A| − 1

∑
ai ,aj

Π(ai ,aj )+
-

2

, (6)

where (ai ,aj ) represents a pair of level assets andΠ(ai ,aj ) returns 1
if the two assets are next to each other; otherwise, Π(ai ,aj ) returns
0, meaning the two assets are not close to each other.

Height Distribution Cost. We implemented an additional cost
term, height distribution cost, to allow designers to control the as-
sets’ distribution across a synthesized level, this time based on the
height of each game asset. For this cost term, the designer inputs 2D
heightmapM , whichwe represent asℋ(M ) = [h1,1 (M ), ...,hm,n (M )],
and which is equal in size to the grid of level L (i.e., |M | = |L|). We
then defined the height distribution cost term as:

CHD
Level (L) = 1 − exp *

,
−

1
2σ 2

1
|L|

∑
li, j

(
H (li, j ) − hi, j (M )

)2+
-
, (7)

whereH (li, j ) returns the height value of the asset currently placed
in grid cell li, j and σ controls the spread of the Gaussian penalty
function, which we set to σ = 3.00 through trial testing. We present
examples of different height distribution patterns and correspond-
ing synthesized game levels in Figure 4.

4.3 Optimization
Based on target cost function values, our system optimizes the total
cost function through aMarkov chainMonte Carlo (MCMC)method
called “simulated annealing” using a Metropolis-Hastings state-
search step. Since our system needs to consider all possible level
design outcomes during optimization, we employed the reversible-
jump variation of the MCMC technique [10]. To apply simulated
annealing, we first defined a Boltzmann-like objective function:

f (L) = exp *
,
−

1
t
CTotal (L)+

-
, (8)

where t encodes the temperature parameter of simulated annealing.
During optimization, the system iteratively proposes a new con-
figuration of a level (L′) by altering its current configuration (L).
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(a) (b) (c)

Figure 4: Example synthesized game levels based on differ-
ent height distribution patterns. (a) Input height distribu-
tion, (b) resultant height distribution, and (c) synthesized
game level.

The system suggests a new game level (L′), by choosing one of the
following moves:
• Add a level asset: Our system randomly selects one of the
level’s assets from our dataset and places it at a randomly
chosen location of grid L. If the system places the asset in
a position that overlaps with other level assets, the system
rejects this proposed design.
• Remove a level asset: When the system removes a level
asset, it randomly selects one of the level assets currently
placed in L and removes it.
• Replace a level asset: By replacing a level asset, our system
randomly selects one of the level assets in current level con-
figuration L and replaces it with a randomly selected level
asset from our dataset. To prevent overlapping with an asset
in L, the system only selects an asset from the dataset that is
equal in size to the asset selected from L.

We set the probability of adding a level asset to padd = .40, the
probability of removing a level asset to premove = .20, and the
probability of replacing a level asset to preplace = .40. Through
these probabilities, our system chooses to add a level asset and
replace a level asset more often than choosing to remove an asset.

By applying one of these moves, our system proposes a game
level (L′) and compares the total cost of the proposed game level
(L′) with the total cost of the current game level (L) to determine
whether it accepts the proposed game level (L′) or keeps the current
game level (L). To ensure balanced, trans-dimensional optimization,
we defined the probability of each move. Our system computes the
probability of adding a level asset as:

padd (L
′ |L) = min *

,
1,
premove
padd

U − |L|

|L′ |

f (L′)

f (L)
+
-
. (9)

It computes the probability of removing a level asset as:

premove (L
′ |L) = min *

,
1,

padd
premove

|L|

U − |L′ |

f (L′)

f (L)
+
-
. (10)

It computes the probability of replacing a level asset move as:

preplace (L
′ |L) = min *

,
1,

f (L′)

f (L)
+
-
. (11)

For the above formulations, we set an upper limit on the amount
frequency at which each level asset could be chosen during opti-
mization using the variableU . We assumed that our system could
select each asset up to Ui times, rather than an infinite number
of times. Thus, our system synthesizes a level of up toU =

∑
i Ui

game level objects. In our implementation, we used U = 300 for all
level assets.

We applied simulated annealing to explore our solution space
effectively. Simulated annealing allowed us to use a temperature pa-
rameter (t ) to control the acceptance probability of the synthesized
game level configurations. If the temperature parameter were high,
the system would aggressively explore the whole solution space. If
the temperature parameter were low, the optimizer would become
greedier. We initialized the temperature parameter as t = 1.00 at
the beginning of optimization. In each iteration, we multiplied the
temperature parameter by t∗ = .99975, and the optimization pro-
cess terminated when the change in CTotal (L) was less than .25%
over the last 100 iterations after 5, 000 iterations.

Unless we specified otherwise, we set the weight of the mean
spatial exploitation cost to wM

Exp = 1.00, the weight of the spatial
exploration variance cost to wV

Exp = .80, and the weight of the
spatial exploration distribution cost to wD

Exp = .10. Moreover, for
the prior cost terms, we set the weight of the occupied area cost
towOA

Level = .40, the weight of the adjacent penalty cost towAP
Level =

.20, and the weight of the height distribution cost to wHD
Level =

.40. Obviously, our design decisions prioritized the mean spatial
exploitation cost and the spatial exploration variance cost over all
other cost terms. However, a level designer can easily adjust the
cost terms’ heights to explore various other design outputs.

5 EVALUATING SPATIAL EXPLORATION
We conducted a user study to evaluate whether our proposed
method to synthesize game levels would trigger a designer-specified
amount of spatial exploration among study participants. In the fol-
lowing subsections, we describe our methodology for this study.

5.1 Participants
For this between-group study, we conducted an a priori power
analysis [4] to determine a suitable sample size using the G*Power
[7] software version 3.10. These calculations were based on a small
effect size of .20, a .90 power, an α = .05, and three groups. This
analysis resulted in a recommended sample size of 216 participants.

To recruit participants, we emailed undergraduate students in
our department. In total, 225 students (75 per experimental condi-
tion) volunteered to participate (age: M = 21.36, SD = 2.28). Of
this sample, 180 participants were male, 39 were female, and six
preferred not to disclose their gender. Moreover, 33 participants
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identified as novice game players, 96 as casual players, 49 as core
players, and 47 as expert players. Finally, when participants stated
how often they had played video games in the last year, two indi-
cated never, six indicated less than one hour in total, eight indicated
one hour, 38 indicated one hour monthly on average, 69 indicated
one hour weekly, 54 indicated one hour daily, and 54 indicated more
than one hour daily.

5.2 Experimental Conditions
We developed three game levels to serve as experimental conditions
in order to determine whether our method could synthesize game
levels that influence participants’ spatial exploration. As we men-
tioned earlier, we used a between-group study design; thus, different
participant groups played different levels, which we developed to
represent the following three conditions:

• Low Spatial Exploration (LSE): For the low spatial explo-
ration condition, we set a target for mean spatial exploration
at ρM = .25. Under this condition, we expected participants
to wander around the level more than they engaged with
the game level assets.
• Medium Spatial Exploration (MSE): For themedium spa-
tial exploration condition, we set a target for mean spatial
exploration at ρM = .50. Under this condition, we expected
participants to spend roughly equal time wandering around
the level and engaging with the game level assets.
• High Spatial Exploration (HSE): For the high spatial ex-
ploration condition, we set a target for mean spatial explo-
ration at ρM = .75. Under this condition, we expected par-
ticipants to spend more time exploring the game level assets
than wandering around the level.

For all three conditions, we set a spatial exploration variance
target of ρV = .10 and an occupied area target of ρOA = .50. We
assigned a weight of wD

Exp = .00 to the spatial exploration distri-
bution cost and a weight ofwHD

Exp = .00 for the height distribution
cost; therefore, our system does not consider these terms during
optimization. We present the three levels we used in this study
in Figure 5. Finally, we used a 25 × 25 grid as the map for our
open-world game (as mentioned, each grid cell was 25 × 25 Unity
units in size). We realized during our pilot study that this grid size
constituted a sufficient size to ensure that a level was not too small
and allow the player enough space to move around and explore. All
game levels and our implementations can be found on our project’s
website and downloaded from there.

5.3 Measurements
We collected data on participants’ spatial exploration behavior.
Specifically, spatial exploration refers to the time each participant
spent inside each cell of each game level asset ai over their total
time spent in a level. To collect these data, we used the position of
the avatar controlled by participants and computed its total time
spent inside each grid cell. We expected that, the more time a player
spent inside a cell, the more curious they were to explore the related
asset.

(a) (b) (c)

Figure 5: A top-down view of the three different game levels
used in our user study. From left to right: (a) low spatial ex-
ploration, (b) medium spatial exploration, and (c) high spa-
tial exploration. The heatmapping represents how spatial
exploration was distributed across the open-world levels.

We also collected self-reported ratings through a post-game sur-
vey that we distributed to our participants. This survey collected de-
mographic information and selected measurements from the Game
User Experience Satisfaction Survey (GUESS). GUESS was validated
by Phan et al. [32], and it examines game experience across several
areas. Its measurements can be used independently, depending on
a project’s needs. For our study, we included GUESS’s enjoyment,
creative freedom, play engrossment, and personal gratification mea-
surements to evaluate how participants perceived and experienced
our synthesized game levels.

5.4 Procedure
We conducted this study remotely to minimize the spread of coro-
navirus disease 2019 (COVID-19). Specifically, we emailed partic-
ipants instructions on how to download our game and complete
the study. We provided participants with written, step-by-step in-
structions (playing the game, locating a saved .csv file, uploading
their save file to our survey website after finishing the game, and
completing our online survey in Qualtrics). Moreover, we asked
participants to pay attention to our in-game instructions, which
directed them step-by-step on how to complete the study. Addition-
ally, we provided in-game instructions to participants regarding
the game’s controls, which have been shown that improve perfor-
mance, players’ experience, and players’ intrinsic motivation [17].
After downloading the game and before completing the study, we
asked participants to consent to participation by signing an online
form. Once enough participants had indicated their interest in vol-
unteering for our study, we randomly assigned them to one of our
experimental conditions.

During participants’ gameplay, our game application recorded
their spatial exploration and saved it to a .csv file. Participants
played our game for 10 minutes. After 10 minutes, a message was
displayed onscreen, instructing them to proceed with the study.
We instructed participants to press the X key on their keyboard;
then, a browser window opened and loaded our survey website. If
this browser window did not load, our initial instructions provided
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participants with all the information they needed to access the
survey website. Participants were asked to answer all questions
on the survey page. Moreover, we provided a text box area for
participants to provide comments they thought would be helpful
for future improvement of our game and gameplay experience.
Finally, the surveywebsite instructed participants to use an “upload”
button to upload the .csv file that had been generated during their
gameplay immediately after they had pressed the X key. After
participants had submitted their survey responses, they were free
to play our game as long as they wished.

5.5 Results
We used a one-way analysis of variance (ANOVA) to explore poten-
tial differences across the examined conditions. Both Shapiro-Wilk
tests at the 5% level and a graphs of the residuals using Q-Q plots
indicated our data’s normality. We used a p-value of < .05 to de-
note statistical significance. Finally, we used Bonferroni-corrected
estimates for our post hoc comparisons.

5.5.1 Spatial Exploration. Analysis of participants’ spatial explo-
ration measurements indicated significant differences across the
examined conditions (F [2, 222] = 23.706, p = .0001). The results of
our post hoc comparison showed that spatial exploration under the
LSE condition (M = .68, SD = .66) was statistically significantly
lower than under the MSE condition (M = .72, SD = .77) atp = .001
and the HSE condition (M = .76, SD = .64) at p = .001. Moreover,
spatial exploration under the MSE condition was statistically sig-
nificantly lower than under the HSE condition at p = .043.

In addition to our statistical analysis of spatial exploration, we
also sought to understand how participants explored had visually
explored our synthesized game levels. Accordingly, we averaged
participants’ spatial exploration data for each cell of the game level
grid. Later, we used spatial exploration heatmaps of our synthesized
levels and of participants’ data and computed their differences,
which we present in Figure 6.

5.5.2 GUESS Survey. We also analyzed participants’ self-reported
ratings based on the GUESS survey. Unfortunately, we could not
identify statistically significant results for all four examined mea-
surements (enjoyment, creative freedom, play engrossment, and per-
sonal gratification). Specifically, ANOVAs revealed: F (2, 222) = .149,
p = .861 for enjoyment; F (2, 222) = .191, p = .826 for creative
freedom; F (2, 222) = .005, p = .995 for play engrossment; and
F (2, 222) = 1.091, p = .338 for personal gratification.

5.6 Discussion
Our user study sought to explain whether our method could synthe-
size game levels that trigger designer-specified spatial exploration
behavior among participants. Accordingly, we collected data on
participants’ in-game spatial exploration and their self-reported
ratings through a post-game survey.

Based on spatial exploration measurements, we found that our
method can synthesize game levels that trigger different spatial
exploration behaviors among participants for all three of our ex-
perimental conditions (LSE, MSE, and HSE). Initially, our results

LSE

MSE

HSE

(a) Input (b) Participants (c) Difference

Figure 6: Heatmaps of spatial exploration in our synthesized
game levels (LSE, MSE, and HSE). Participants’ spatial ex-
ploration data are plotted on a heatmap, along with the dif-
ferences between the spatial exploration of the synthesized
game levels and participants’ data.

suggested that our method could synthesize game levels that im-
pact the spatial exploration behavior of participants. However, al-
though we obtained statistically significant results, we observed a
large offset between the requested mean spatial exploration targets
(ρM = .25 for LSE, ρM = .50 for MSE, and ρM = .75 for HSE) and
participants’ mean values (M = .68 for LSE,M = .72 for MSE, and
M = .76 for HSE)—especially under the LSE and MSE conditions.
Specifically, the results we obtained for the HSE condition are close
to the targets we assigned to ρM (offset = .01). However, our LSE
and MSE results strongly suggest that the offset between the mean
spatial exploration target ρM and participants’ actual spatial explo-
ration data increased dramatically (offset = .22 for MSE and offset
= .43 for LSE).

However, we understand from previously published studies that
such offsets are present in experience-driven designs [24, 30, 31]
between target values and participants’ actual performance or per-
ception. We interpreted the large offset values obtained in our
study through our game’s main instruction provided to partici-
pants. Specifically, we instructed participants to “feel free to explore
this game level;” thus, we intentionally instructed participants to
explore. Likely, they tried to explore as much of the level as possible
instead of exploring the game assets. We also observed this in the
difference between the input and resultant heatmaps in Figure 6.
Instead of observing more bright areas in the computed difference,
we saw more dark cells, indicating that participants did not try to
focus on assets but, rather, focused on exploring the level. How-
ever, across all three conditions, one observation was remarkable:
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near the center of each level, the optimizer placed a tall mountain
asset, and participants’ data clearly shows a red cell near the center
of all three levels, indicating that almost all participants visited
this mountain (EXP category) and spent more time around this
asset. This finding is similar to what Gómez-Maureira [9] reported
in their study, which we used as a basis for our paper. However,
our study expands on Gómez-Maureira’s [9] findings about how
participants explored different asset types (EXP, OBS, OOP, and
SPC). Specifically, our statistical analysis revealed that participants’
spatial exploration could be influenced by asset type. We found that
assets of the EXP type were explored more, while assets of the OBS
type were explored the least and assets of the OOP and SPC were
explored to middling extents between EXP and OBS. This finding
should be considered by game level designers who wish to induce
players’ spatial exploration.

In addition to tracking in-game spatial exploration, we also asked
participants to respond to a post-game survey that collected differ-
ent variables regarding their gameplay experience. Our statistical
analysis did not reveal significant differences for all four examined
GUESS measurements (enjoyment, creative freedom, play engross-
ment, and personal gratification). We expected this outcome because
we specifically designed three open-world levels that share the same
assets and, as we mentioned, instructed participants to explore the
levels without providing a specific target (e.g., collecting coins or
observing their preferred assets). Because the only difference ob-
served across the three levels was the assets selected and placed
by our system, this difference insufficiently reflected differences
in participants’ gameplay experiences. However, our lack of sig-
nificant results regarding participants’ gameplay experience does
not invalidate our method. Our main objective was to induce differ-
ent spatial exploration behaviors among participants, rather than
synthesizing an enjoyable experience for participants.

Additionally, we found some similarities across the three experi-
mental conditions, based on selected comments from participants.
Regarding game objectives, participants wrote comments such as:
“Great game but consider adding objectives or goals that the character
can accomplish.”, “I was not sure what the goal of the game was.”,
and “While creative and fun for a while. The game simply had no
objective. At some point you will become bored of exploring because
you will have explored everything. There needs to be objectives in
order to keep the player interested.” Regarding interaction in the
game, participants wrote: “I think the game needs some interactive
elements to make it more interesting.” and “There was no objective,
no interact button, no lore, there was nothing in the game.” Finally,
regarding the exploration part of our game, participant comments
included: “It was interesting to explore the map, but since my game
had no objective or progression, it became very boring after explor-
ing the whole map.” and “There was not any progression. I was just
exploring some assets and that was pretty much it for me.”

We found all participant comments reasonable and informative.
Our game did not provide any goal to participants. In contrast,
participants were left to merely explore an open-world level. From
an experimental perspective, we think we made the right decisions
since we wanted participants to focus on level assets and explore
the levels based on their curiosity, instead of providing an objective
that could have distracted them from their curiosity in exploring the
map. Given our findings and participants’ comments, researchers

should conduct additional studies to further examine how goals or
targets can influence players’ spatial exploration in games.

Alongside the limitations of our project revealed by participants’
comments, we noted a few more limitations, which we hope will
benefit future researchers interested in studying spatial exploration
in games. One such limitation is that the current total cost function
considered only assets’ placement, instead of the aesthetic compat-
ibility of nearby assets. Including an additional cost term in this
regard would help our method improve synthesized level aesthetics.
Additionally, a dataset comprising more than 32 level assets should
be developed and annotated. Although we designed open-world
levels, assets were evidently repeated in these synthesized levels,
reducing curiosity-driven exploration behavior. Therefore, intro-
ducing more variations to synthesized game levels increase players’
enjoyment. Additionally, in this project, we demonstrated a sim-
ple approach to synthesizing game levels that we characterized as
highly structured, based on a 2D map. Critically, additional level
designs—such as mazes and dungeons—must be explored to explain
whether and how such layouts can influence players’ spatial ex-
ploration behavior. Finally, we developed a game with no actual
objective, as we mentioned before. Therefore, incorporating some
goals, similar to other games—such as collecting coins—would pro-
vide additional insights into players’ curiosity when exploring a
level. Finally, we only included a single asset in each level during
our annotation phase. We think an “antagonistic” annotation pro-
cess—in which multiple assets are placed in a level—could provide
more reliable annotation data, especially when a level is designed
using multiple assets. Understanding players’ curiosity about ex-
ploring a level asset against other assets of that game level could
help refine our procedural level design method to encourage spatial
exploration.

6 CONCLUSIONS AND FUTUREWORK
In this project, we aimed to procedurally generate game levels
that induce players’ designer-defined spatial exploration. To the
best of our knowledge, we have developed the first method that
attempts to automatically synthesize game levels by considering
players’ spatial exploration. Although we achieved the project’s
primary goal of validating our method’s ability to automatically
synthesize game levels that induce different spatial exploration
behavior through a user study, we also received several comments
from participants that revealed project limitations. In a future work,
we plan to address this feedback and the mentioned limitations
discussed in the previous section by revising our method. We also
plan to further explore the potential of generalizing such a method
across game genres. Procedural level design targeting designer-
specified spatial exploration behavior has significant potential and
applicability in games. Therefore, the research community should
consider it when developing experience-driven procedural game
levels.

REFERENCES
[1] Cameron Browne and Frederic Maire. 2010. Evolutionary game design. IEEE

Transactions on Computational Intelligence and AI in Games 2, 1 (2010), 1–16.
[2] Luigi Cardamone, Daniele Loiacono, and Pier Luca Lanzi. 2011. Interactive

evolution for the procedural generation of tracks in a high-end racing game. In
Proceedings of the 13th annual conference on Genetic and evolutionary computation.
395–402.



, , Pedro Acevedo, Minsoo Choi, Huimin Liu, Dominic Kao, and Christos Mousas

[3] Luigi Cardamone, Georgios N Yannakakis, Julian Togelius, and Pier Luca Lanzi.
2011. Evolving interesting maps for a first person shooter. In European Conference
on the Applications of Evolutionary Computation. Springer, 63–72.

[4] Jacob Cohen. 2013. Statistical power analysis for the behavioral sciences. Routledge.
[5] Kate Compton and Michael Mateas. 2006. Procedural level design for platform

games. In Proceedings of the AAAI Conference on Artificial Intelligence and Inter-
active Digital Entertainment, Vol. 2. 109–111.

[6] Greg Costikyan. 2013. Uncertainty in games. Mit Press.
[7] Franz Faul, Edgar Erdfelder, Albert-Georg Lang, and Axel Buchner. 2007. G*

Power 3: A flexible statistical power analysis program for the social, behavioral,
and biomedical sciences. Behavior research methods 39, 2 (2007), 175–191.

[8] Marcello A Gómez-Maureira and Isabelle Kniestedt. 2019. Exploring video games
that invoke curiosity. Entertainment Computing 32 (2019), 100320.

[9] Marcello A Gómez-Maureira, Isabelle Kniestedt, Max Van Duijn, Carolien Rieffe,
and Aske Plaat. 2021. Level Design Patterns That Invoke Curiosity-Driven
Exploration: An Empirical Study Across Multiple Conditions. Proceedings of the
ACM on Human-Computer Interaction 5, CHIPLAY (2021), 1–32.

[10] Peter J Green. 1995. Reversible jump Markov chain Monte Carlo computation
and Bayesian model determination. Biometrika 82, 4 (1995), 711–732.

[11] John Harris. 2007. Game design essentials: 20 open world games. Gamasutra–The
Art and Business of Making Games 26 (2007).

[12] Erin Jonathan Hastings, Ratan K Guha, and Kenneth O Stanley. 2009. Automatic
content generation in the galactic arms race video game. IEEE Transactions on
Computational Intelligence and AI in Games 1, 4 (2009), 245–263.

[13] Mark Hendrikx, Sebastiaan Meijer, Joeri Van Der Velden, and Alexandru Iosup.
2013. Procedural content generation for games: A survey. ACM Transactions on
Multimedia Computing, Communications, and Applications (TOMM) 9, 1 (2013),
1–22.

[14] Danial Hooshyar, Moslem Yousefi, Minhong Wang, and Heuiseok Lim. 2018.
A data-driven procedural-content-generation approach for educational games.
Journal of Computer Assisted Learning 34, 6 (2018), 731–739.

[15] Kenneth Hullett and Jim Whitehead. 2010. Design patterns in FPS levels. In
proceedings of the Fifth International Conference on the Foundations of Digital
Games. 78–85.

[16] Martin Jennings-Teats, Gillian Smith, and Noah Wardrip-Fruin. 2010. Polymorph:
A model for dynamic level generation. In Proceedings of the AAAI Conference on
Artificial Intelligence and Interactive Digital Entertainment, Vol. 6. 138–143.

[17] Dominic Kao, Alejandra J Magana, and Christos Mousas. 2021. Evaluating
Tutorial-Based Instructions for Controllers in Virtual Reality Games. Proceedings
of the ACM on Human-Computer Interaction 5, CHI PLAY (2021), 1–28.

[18] Daniel Karavolos, Antonios Liapis, and Georgios Yannakakis. 2019. A Multifac-
eted Surrogate Model for Search-Based Procedural Content Generation. IEEE
Transactions on Games 13, 1 (2019), 11–22.

[19] Todd B Kashdan, Melissa C Stiksma, David J Disabato, Patrick E McKnight, John
Bekier, Joel Kaji, and Rachel Lazarus. 2018. The five-dimensional curiosity scale:
Capturing the bandwidth of curiosity and identifying four unique subgroups of
curious people. Journal of Research in Personality 73 (2018), 130–149.

[20] Manuel Kerssemakers, Jeppe Tuxen, Julian Togelius, and Georgios N Yannakakis.
2012. A procedural procedural level generator generator. In 2012 IEEE Conference
on Computational Intelligence and Games (CIG). IEEE, 335–341.

[21] Ahmed Khalifa, Fernando de Mesentier Silva, and Julian Togelius. 2019. Level
design patterns in 2D games. In 2019 IEEE Conference on Games (CoG). IEEE, 1–8.

[22] Christoph Klimmt. 2003. Dimensions and determinants of the enjoyment of
playing digital games: A three-level model. In Level up: Digital games research
conference. 246–257.

[23] Schulamith Kreitler, Edward Zigler, and Hans Kreitler. 1975. The nature of
curiosity in children. Journal of school psychology 13, 3 (1975), 185–200.

[24] Wanwan Li, Biao Xie, Yongqi Zhang, Walter Meiss, Haikun Huang, and Lap-Fai
Yu. 2020. Exertion-aware path generation. ACM Trans. Graph. 39, 4 (2020), 115.

[25] Antonios Liapis, Georgios Yannakakis, and Julian Togelius. 2013. Designer
modeling for personalized game content creation tools. In Proceedings of the
AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment,
Vol. 9. 11–16.

[26] Antonios Liapis, Georgios Yannakakis, and Julian Togelius. 2013. Towards a
generic method of evaluating game levels. In Proceedings of the AAAI Conference
on Artificial Intelligence and Interactive Digital Entertainment, Vol. 9. 30–36.

[27] Antonios Liapis, Georgios N Yannakakis, and Julian Togelius. 2012. Adapting
models of visual aesthetics for personalized content creation. IEEE Transactions
on Computational Intelligence and AI in Games 4, 3 (2012), 213–228.

[28] Jordan A Litman. 2008. Interest and deprivation factors of epistemic curiosity.
Personality and individual differences 44, 7 (2008), 1585–1595.

[29] Jordan A Litman. 2010. Relationships between measures of I-and D-type curiosity,
ambiguity tolerance, and need for closure: An initial test of the wanting-liking
model of information-seeking. Personality and Individual Differences 48, 4 (2010),
397–402.

[30] Huimin Liu, Zhiquan Wang, Christos Mousas, and Dominic Kao. 2020. Virtual
reality racket sports: Virtual drills for exercise and training. In 2020 IEEE Interna-
tional Symposium on Mixed and Augmented Reality (ISMAR). IEEE, 566–576.

[31] Christos Mousas, Claudia Krogmeier, and Zhiquan Wang. 2021. Photo Sequences
of Varying Emotion: Optimization with a Valence-Arousal Annotated Dataset.
ACM Transactions on Interactive Intelligent Systems (TiiS) 11, 2 (2021), 1–19.

[32] Mikki H Phan, Joseph R Keebler, and Barbara S Chaparro. 2016. The development
and validation of the game user experience satisfaction scale (GUESS). Human
factors 58, 8 (2016), 1217–1247.

[33] David Plans and Davide Morelli. 2012. Experience-driven procedural music
generation for games. IEEE Transactions on Computational Intelligence and AI in
Games 4, 3 (2012), 192–198.

[34] Mike Preuss, Antonios Liapis, and Julian Togelius. 2014. Searching for good and
diverse game levels. In 2014 IEEE Conference on Computational Intelligence and
Games. IEEE, 1–8.

[35] Jesse Schell. 2008. The Art of Game Design: A book of lenses. CRC press.
[36] Noor Shaker, Julian Togelius, and Mark J Nelson. 2016. Procedural content gener-

ation in games. Springer.
[37] Peizhi Shi and Ke Chen. 2017. Learning constructive primitives for real-time

dynamic difficulty adjustment in Super Mario Bros. IEEE Transactions on Games
10, 2 (2017), 155–169.

[38] Tianye Shu, Jialin Liu, and Georgios N Yannakakis. 2021. Experience-driven PCG
via reinforcement learning: A Super Mario Bros study. In 2021 IEEE Conference
on Games (CoG). IEEE, 1–9.

[39] Gillian Smith, Ryan Anderson, Brian Kopleck, Zach Lindblad, Lauren Scott, Adam
Wardell, Jim Whitehead, and Michael Mateas. 2011. Situating quests: Design pat-
terns for quest and level design in role-playing games. In International Conference
on Interactive Digital Storytelling. Springer, 326–329.

[40] Nathan Sorenson, Philippe Pasquier, and Steve DiPaola. 2011. A generic approach
to challenge modeling for the procedural creation of video game levels. IEEE
Transactions on Computational Intelligence and AI in Games 3, 3 (2011), 229–244.

[41] Penelope Sweetser. 2008. Emergence in games. Game Connect Asia Pacific 2008
(2008).

[42] Penelope Sweetser and Janet Wiles. 2005. Scripting versus emergence: issues for
game developers and players in game environment design. International Journal
of Intelligent Games and Simulation 4, 1 (2005), 1–9.

[43] Alexandra To, Safinah Ali, Geoff F Kaufman, and Jessica Hammer. 2016. Integrat-
ing Curiosity and Uncertainty in Game Design. Digra/fdg (2016).

[44] Julian Togelius and Jurgen Schmidhuber. 2008. An experiment in automatic
game design. In 2008 IEEE Symposium On Computational Intelligence and Games.
Citeseer, 111–118.

[45] Julian Togelius, Jim Whitehead, and Rafael Bidarra. 2011. Guest editorial: Proce-
dural content generation in games. IEEE Transactions on Computational Intelli-
gence and AI in Games 3, 03 (2011), 169–171.

[46] Julian Togelius, Georgios N Yannakakis, Kenneth O Stanley, and Cameron Browne.
2011. Search-based procedural content generation: A taxonomy and survey. IEEE
Transactions on Computational Intelligence and AI in Games 3, 3 (2011), 172–186.

[47] Christopher W Totten. 2019. Architectural Approach to Level Design. CRC Press.
[48] Evan James Williams. 1949. Experimental designs balanced for the estimation

of residual effects of treatments. Australian Journal of Chemistry 2, 2 (1949),
149–168.

[49] Biao Xie, Yongqi Zhang, Haikun Huang, Elisa Ogawa, Tongjian You, and Lap-Fai
Yu. 2018. Exercise intensity-driven level design. IEEE transactions on visualization
and computer graphics 24, 4 (2018), 1661–1670.

[50] Georgios N Yannakakis and Ana Paiva. 2014. Emotion in games. Handbook on
affective computing 2014 (2014), 459–471.

[51] Georgios N Yannakakis and Julian Togelius. 2011. Experience-driven procedural
content generation. IEEE Transactions on Affective Computing 2, 3 (2011), 147–161.


	Abstract
	1 Introduction
	2 Related Work
	3 Preliminary Remarks
	3.1 Game Level Assets
	3.2 Game Level Asset Annotation
	3.3 Game Level Asset Representation

	4 Problem Formulation and Optimization
	4.1 Spatial Exploration Costs
	4.2 Level Design Cost
	4.3 Optimization

	5 Evaluating Spatial Exploration
	5.1 Participants
	5.2 Experimental Conditions
	5.3 Measurements
	5.4 Procedure
	5.5 Results
	5.6 Discussion

	6 Conclusions and Future Work
	References

