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Figure 1: Lode Enhancer user interface with an example of an up-scaled level. The system is always running whenever a user
makes a change in any canvas the other two get updated. The persistence bar helps to inform the system on which tiles can be
replaced during scaling.

ABSTRACT
We explore AI-powered upscaling as a design assistance tool in
the context of creating 2D game levels. Deep neural networks are
used to upscale artificially downscaled patches of levels from the
puzzle platformer game Lode Runner. The trained networks are
incorporated into a web-based editor, where the user can create and
edit levels at three different levels of resolution: 4x4, 8x8, and 16x16.
An edit at any resolution instantly transfers to the other resolutions.
As upscaling requires inventing features that might not be present
at lower resolutions, we train neural networks to reproduce these
features. We introduce a neural network architecture that is capable
of not only learning upscaling but also giving higher priority to
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less frequent tiles. To investigate the potential of this tool and
guide further development, we conduct a qualitative study with
3 designers to understand how they use it. Designers enjoyed co-
designing with the tool, liked its underlying concept, and provided
feedback for further improvement.
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1 INTRODUCTION
Artificial Intelligence (AI)-powered design assistance can take many
forms, thereby, experimenting with the relation between human
user(s) and AI systems is crucial for establishing human-AI co-
creativity. A common trope is that of the human designing some-
thing relatively small or lacking detail (i.e. downscaled design), and
the AI system producing a larger and more detailed (i.e. upscaled)
version of the human design [21]. This entails that the AI system
has some way of making up for the missing information.

In this paper, we explore the idea of using AI-powered upscaling
(and, to a lesser extent, downscaling) for design assistance. The
core idea is that a designer can design at any level or resolution (i.e.
scale) and the AI system will intelligently up- and downscale it as
necessary. In particular, a designer can draw a game-level sketch
at a small scale and have it upscaled to a complete level, and then
edit the upscaled level which gets automatically scaled down so it
reflects the complete level.

The prototype system we describe in this paper, Lode Enhancer,
uses a neural architecture to scale up level sketches from 4x4 to
8x8 tiles, and again from 8x8 to 16x16 tiles (figure 1). The neural
networks are trained to upscale downscaled versions of existing
Lode Runner level segments, meaning they have learned common
Lode Runner level design patterns. The complete system, including
trained networks, runs in the browser and produces near-instant
results on modern computers. To understand the potential of AI-
powered upscaling and downscaling, we did a quantitative analysis
on the generated levels then followed by an informal study where
we let three game designers use Lode Enhancer and interviewed
them about their impressions.

2 LODE RUNNER
Lode Runner (Broderbund, 1983) is a classic puzzle platformer game
where the goal of the game is to collect all gold pieces without being
caught by the enemies. The player can only move left and right and
dig through the floor. To go to higher platforms, the player needs
to climb ladders. The digging mechanic allows the player to travel
downward and it can be used to trap enemies.

Lode Runner comes with 150 levels which makes it a good
candidate for procedural level generation using machine learn-
ing (PCGML) [18]. Also, the spatial dependencies between different
tiles make this game a good test bed for our experiment. Snodgrass
and Ontanón [16] used multidimensional markov chain to generate
levels for different games including Lode Runner. Thakkar et al. [20]
used a trained vanilla and variational autoencoder to generate Lode
Runner levels and used evolution strategies to search for playable
levels. Steckel and Schrum [17] trained a GAN on Lode Runner
levels and used the MAP-Elites algorithms to search the space for
diverse playable levels.

3 MIXED-INITIATIVE PCG
There exists various literature on procedural content generation, in
particular on the autonomous generation of levels where the system
produces levels with minimal human input [14]. In many settings,
it is more useful to have a system that can interact with humans,
so that a human user and an AI system can design together [9, 22].
Many of these systems are based on making suggestions to the user,

evaluating the user’s edits, and/or enforcing constraints of various
kinds. For example, Tanagra [15] uses constraint solving to guaran-
tee playability in user designs, and Sentient Sketchbook evaluates
strategy maps for various kinds of balance and uses evolutionary
algorithms to suggest changes to the maps [11].

While most early mixed-initiative game design assistants relied
on search, optimization, and/or constraint solving, a new generation
of these tools build on machine learning. For example, RL brush [4]
gives level editing suggestions to users generated by reinforcement
learning agents, and Lode Encoder [2] allows users to mix and
match between suggested levels using variational autoencoders
and incentivizes users to create new levels. In Morai Maker [6], the
human user and the AI agent collaborate in a turn-based process
to generate Super Mario Bros (Nintendo, 1985) levels.

4 MULTILEVEL SCALE MACHINE LEARNING
A staple of sci-fi movies and crime shows, image upscaling [21],
is now a commonplace technique that is used both on its own [5]
and as part of image generation workflows [13]. Neural networks
of various types can be trained to upscale images simply by using
datasets where an artificially downscaled image is the input and
the original image is the target. As the network learns to upscale, it
learns to reproduce the various aspects of a high-resolution image
that is not part of its low-resolution counterpart.

Upscaling is commonly used in image generation pipelines. This
includes the StyleGAN [8] family of networks, where original im-
ages are generated at a low resolution and then upscaled by succes-
sive networks. Similarly, Stable Diffusion [13] uses trained upscal-
ing diffusion models to generate high-quality images. Upscaling has
not been applied much to mixed-initiative game-level generation
yet. The most closely related work is Sentient World [10], where
the user designs a low-resolution map, then the system suggests
an upscaled version using neuroevolution through novelty search.
In Sentient World, the generated maps are a continuous value for
the height map which makes the problem similar to images com-
pared to generating levels for tile-based games where there is no
correlation between the tile values.

Game level design poses a significantly different problem than
image generation, because of the functionality criteria; an image
does not need to “work”, but a level needs to be completable. For
levels based on fixed-size assets (such as tiles/voxels), there is also
the phenomenon that this functionality constraint might only exist
at the full-resolution version of the level, as the compressed levels
are almost not completable. Another common challenge is the dis-
crete aspect of the domain. When you scale up a level it does not
mean that the surrounding tiles/voxels suppose to be similar. For
example, having one enemy in a low-resolution level does not mean
that we need 10 enemies at this position if the level got enlarged
10 times.

5 LODE ENHANCER
Lode Enhancer1 is an AI-powered level design tool that helps game
designers to create “Lode Runner” levels through upscaling. Using
the system, the user can draw levels on a small canvas then the
system upscales it in an intelligent way and produces a larger and
1http://www.akhalifa.com/lodeenhancer/
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Figure 2: The layer scaling network architecture. The network consists of 6 scale layers (one for each tile type) followed by a
temporary Deconv layer to help train the network. The input for the first scale layer is ignored and only the user input is used.

more detailed level. Figure 1 shows the full system UI where the
user is provided with three different canvases of different scales
(4x4, 8x8, and 16x16). The user has a toolbar on the left that can be
used to pick a certain tile to draw. Whenever any change happens
to any canvas, the canvas is sent to the scaler module which reflects
these changes to the other two canvases. Finally, the scaler module
uses the persistence module (shown as a slider at the bottom of the
UI) to know which tiles can be replaced and which ones should be
kept the same.

5.1 Scaler Module
The scaler module is responsible for reflecting any changes that
the user makes in any canvas to the other canvases. This is done
using an up-scaler system and a down-scaler system. The up-scaler
system is responsible for doubling the level size while the down-
scaler system is responsible for halving the level size. For example,
if the user changes the 8x8 canvas, the system will use the down-
scaler to reflect these changes in the 4x4 canvas and the up-scaler
to reflect the changes in the 16x16 canvas.

The up-scaler system is modeled using a neural network called
layer scaling network (explained in section 6), while the down-
scaler uses a traditional nearest neighbor filter to shrink the level.
Originally, both systems were modeled using neural networks but
in early experiments, we discovered that the down-scaler network
learns to almost replicate the nearest neighbor filter.

5.2 Persistence Module
In our early experiments, we found that the user’s edits in the 16x16
canvas got overwritten by the scaler module if the user went back
and modified the 8x8 or 4x4 canvas. This problem prevented a lot of
early testers from going back and modifying the 8x8 or 4x4 canvas
after making edits to the 16x16 canvas. To solve this, we introduced
the persistence slider that can be seen at the bottom of figure 1.
The persistence slider tells the AI how much it should respect the
user’s edits. For high persistence, the user’s edits get the highest

priority and shouldn’t be replaced. While in low persistence, the
AI can overwrite easily any tile.

The module calculates a confidence value (between 0.5 and 1.0)
for each user-drawn tile. To replace a tile, the scaler module com-
pares the probability of the tile from the neural network with its
confidence value. The tile gets replaced if the network’s probability
is higher than the confidence value of the same tile. To calculate
this confidence value, we take into account the age of the tile (i.e.
how long ago the tile was drawn) as we want the older tiles to be
easier to replace than newly drawn tiles. Equation 1 shows how
the confidence value (𝐶) is calculated given the age of the tile (𝑎)
where 𝐶𝑚𝑎𝑥 is the maximum confidence value, 𝑎𝑚𝑖𝑛 is the age at
which the tile confidence start decreasing linearly, and 𝑎𝑚𝑎𝑥 is the
age at which the tile can be replaced.

𝐶 (𝑎) =


𝐶𝑚𝑎𝑥 𝑎 ≤ 𝑎𝑚𝑖𝑛
𝐶𝑚𝑎𝑥−0.5
𝑎𝑚𝑎𝑥−𝑎𝑚𝑖𝑛

· (𝑎𝑚𝑎𝑥 − 𝑎) + 0.5 𝑎𝑚𝑖𝑛 > 𝑎 ≤ 𝑎𝑚𝑎𝑥

0.5 𝑎 > 𝑎𝑚𝑎𝑥

(1)

Moving the persistence bar changes the 𝑎𝑚𝑖𝑛 , the 𝑎𝑚𝑎𝑥 , and the
𝐶𝑚𝑎𝑥 values. For the lowest persistence 𝑎𝑚𝑖𝑛 is 0, 𝑎𝑚𝑎𝑥 is 1, and
𝐶𝑚𝑎𝑥 is 0.5, while for the highest persistence 𝑎𝑚𝑖𝑛 is 20, 𝑎𝑚𝑎𝑥 is
100, and𝐶𝑚𝑎𝑥 is 1. The slider just linearly interpolates these values
for the in-between ticks.

6 LAYER SCALING NETWORK
Layer scaling network is a new network architecture (shown in
figure 2) designed to help with discrete domains with uneven distri-
bution between the different possible values/tiles. This new archi-
tecture gives different priorities and computation capacities for the
different tiles. For example, in Lode Runner, we want the gold tiles
and enemy tiles to have higher priority than normal brick tiles.

To achieve this, our network consists of 𝑛 − 1 scale layers (ex-
plained in section 6.1) where 𝑛 is the number of possible tiles. Each
layer takes the main user input and outputs a probability of a spe-
cific tile. The order of the output is picked based on the rarity of
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Figure 3: The scale layer used in the new network architec-
ture. The layer takes two inputs (the previous layer output
and the user input) and outputs the scaled output and 16-
channel output for network connectivity.

each tile. For example, in Lode Runner, the enemy tile (rarest) be-
comes the last layer while the brick tile (most common) is the first
layer. For Lode Runner (see figure 2), the network consists of six
scale layers: one layer for each tile type except for empty and player
tiles. We removed the player tile as we wanted the user to have
control over the starting location, while the empty tile is the default
tile if nothing overwrites the location.

6.1 Scale Layer
The scale layer (as shown in figure 3) consists of 2 convolution
layers and a deconvolution layer. The layer takes two inputs: the
original input and the processed input and produces two outputs:
the scaled output and the processed output. The original input is
the small-scale user-drawn level, this input is always concatenated
to the processed input so the layer is conditioned by the user’s
choices. This is similar to the skip connections in the ResNet [7].
Both inputs are of the same size but have a different number of
channels. The scaled output, instead, is twice the size of the input
with one channel where this output reflects the probability of a
certain tile type. The processed output is the normal output that
gets pushed toward the next layer as its processed input.

For Lode Runner, we used two convolutional layers with ReLu
activation function followed by a batch normalization layer for the
processed output. The scaled output uses a deconvolution layer to
scale the input dimension to a bigger dimension. We did not add
more layers as the dataset size is not big enough and we did not
want to give the network more power to easily overfit.

6.2 Network Feedforward Operation
The user-drawn level (small-scale discrete image with 7 channels)
is fed to the network and we collect the different scaled outputs
from the scale layers (6 different outputs). To interpret the output,
we first create a level of twice the size and set it to empty tiles. We
go over the scaled output from the beginning (brick layer) to the
end (enemy layer). For each scaled output, if the value is greater
than 0.5, we change the tile to the current layer tile, otherwise, we
leave it as it is. For example, if we are checking the ladder scaled

(a) 8x8 starting noise (b) 4x4 starting noise

Figure 4: Examples of scaled levels from different noise sizes.

output and the value of the tile at (x=0, y=0) is more than 0.5, we
change the tile in the final output at (x=0, y=0) to the ladder tile. If
later at the gold scaled output that same tile location has a value of
more than 0.5, the tile is changed to gold instead.

6.3 Network Training
To train this architecture, we apply a two-step training method:
base training and greedy layer training. The base training adds a
deconvolution layer (called training head in figure 2) after the last
scale layer. The deconvolution layer produces a scaled output with
7 channels using a softmax activation function (representing all the
different tile values). We use Adam optimizer to train the network
using categorical cross-entropy loss function for 3, 000 epochs.

After the base training mentioned above, we run greedy layer
training to fine-tune each scale layer and train their deconvolution
layer. We start by removing the training head and go in order of
layers from the first scale layer to the last. We get the corresponding
channel from the training data and fine-tune each layer. We use
Adam optimizer to fine-tune the layer using binary cross-entropy
loss function for 1, 000 epochs with early stopping. After a layer is
fine-tuned, we freeze its weights and move to the next layer until all
layers are fine-tuned. For Lode Enhancer, we trained two different
models: scale from 4x4 to 8x8 and scale from 8x8 to 16x16.

6.4 Dataset
For our experiment we used 150 Lode Runner levels made of 32x22
tiles from the Video Games Level Corpus (VGLC) [19]. To increase
the dataset size, we used smaller segments of original levels. We set-
tled down for 4x4, 8x8, and 16x16. For our first network that scales
8x8 levels to 16x16, we applied a 16x16 sliding window method
with a stride of 1 which produced 17, 850 level segments in total.
Since Lode Runner levels can be reflected across the x-axis, we used
that method to augment our dataset to 35, 700 level segments. We
then scaled down these segments to half of their size (8x8) using
the nearest neighbor filter and paired them together to create the
dataset. We repeated the same process using a sliding window of
8x8 to create a dataset for our second network that scales up from
4x4 to 8x8. The dataset for the second network consists of 112, 500
level segments.
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Figure 5: Rendering the training levels with different gener-
ated levels from the layer scaling network using t-SNE.

7 LAYER SCALING NETWORK ANALYSIS
In this section, we analyze quantitatively our layer scaling network.
We focus on two fronts: a) investigating the effect of network scaling
on the input level and b) investigating the advantages of using the
proposed architecture.

7.1 Scaling Effect
In this subsection, we explore the effect of the network’s scaling.We
started by generating 1, 000 4x4 or 8x8 noise inputs that follow the
same distribution of the training data. We passed the 8x8 inputs to
3 trained networks to scale the 8x8 to 16x16, giving us 3, 000 16x16
levels. We passed the 1, 000 4x4 inputs through 3 trained networks
to scale the 4x4 to 8x8 and then passed the outputs through the
other network to scale it to 16x16, giving us 3, 000 16x16 levels.

Figure 4 shows an example of the final scaled levels. It is clear
that scaling twice (from 4x4 to 8x8 and then to 16x16) yields better-
looking levels compared to scaling once (from 8x8 to 16x16). We
believe that having the level iterate more than once in the network
helps to smooth the input noise and make the levels fall in a similar
distribution to the training data. This can be shown in the t-SNE
visualization of all the 16x16 levels (figure 5).

7.2 Network Architecture
In this subsection, we investigate the effect of the proposed network
architecture and compare it against a convolutional neural network
(i.e. 2 convolutional layers followed by a deconvolutional layer).
We also compare the efficiency of the greedy layer training (layer-
scaling network) with respect to the training head (scaling network).
For this experiment, we generated 1, 000 levels by scaling up 4x4
noise twice to reach the size of 16x16. This experiment is repeated
3 times using 6 different trained networks (i.e. 3 networks that
scale from 4x4 to 8x8 and 3 networks that scale from 8x8 to 16x16)
resulting to 3, 000 16x16 generated levels per experiment.

We compare the generated levels (figure 6) with the original
16x16 training levels and calculate the minimum tile-pattern KL-
divergence (TPKLDiv) score [12]. To calculate the minimum score,
we pair every generated level with the closest level from the training

levels (i.e. the one with the minimum TPKLDiv score), and we
compute the average score and the confidence interval for all the
different pairs. We find that both the convolutional network (3.485
± 0.084) and the scaling network (3.633 ± 0.041) yield higher scores
compared to the layer scaling network (2.441 ± 0.031). Having a
lower TPKLDiv score is desired as it means that the local patterns
in the generated levels follow a similar distribution to the ones from
the training levels.

Figure 7 shows the expressive range analysis for the different
networks. We used two main metrics: the number of reachable tiles
and the number of empty tiles. The number of reachable tiles is
the maximum number of reached tiles by a breadth-first search
playing agent that is tested from every single location in the level.
Looking at the expressive range, we notice that both convolutional
and scaling networks have similar ranges. On the other hand, the
layer scaling network yields a more consistent map with a lot of
empty tiles and average reachable tiles. This result is unsurprising
as having a higher amount of empty tiles reduces the number of
reachable tiles since the main character cannot jump. This finding
also suggests that many of the generated levels from the layer
scaling network are similar to each other, which can be seen in
figure 6d. We believe that this is an advantage to our network as
it keeps the relationship between the input (figure 6a) and the
output (figure 6d) as close as possible. In turn, this means that a
small change in the input level will not cause drastic changes in
the output level. This characteristic is particularly important for
mixed-initiative tools of higher trustworthiness value, as the user
can better understand the impact of their actions on the generated
level.

8 QUALITATIVE EVALUATION
To evaluate Lode Enhancer and the ideas behind it, and to provide
directions for future development, we ran a qualitative study with
2 professional and 1 amateur game designers. All designer partic-
ipants went through the following protocol: (1) We first allowed
the designers to play the game to get familiar with its mechanics.
(2) We then gave them a quick tutorial about the tool and how to
use it. (3) We asked designers to use the system to create a playable
level. (4) We asked the designers to communicate their level design
goal and then use the tool to achieve it. (5) We finally asked the
designers to complete a questionnaire related to their experience
using the tool.

8.1 Observing the Designers
All three designers played the first level shown in the online port of
Lode Runner 2 to get familiar with the core game mechanics. After
they were comfortable with the game, we run them through a quick
tutorial of the tool and then asked them to create their levels (as per
our experimental protocol). Throughout this process, we observed
them while using the tool and recorded all their interactions with
Lode Enhancer. We noticed that all three participants ended up
modifying the 16x16 canvas most of the time. That was expected
as the goal was to end up with a 16x16 playable level.

Figure 8 shows the 3 different playable levels created by the
designers without communicating any intent. In this task, the first
2https://loderunnerwebgame.com/game/

https://loderunnerwebgame.com/game/
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(a) Input Levels (b) Convolutional Network (c) Scaling Network (d) Layer Scaling Network

Figure 6: Example of generated 16x16 levels from scaling twice the same input noise using different network architectures.

64 112 160 208 256
Empty Tiles

0

64

128

192

256

Re
ac

ha
bl

e 
Ti

le
s

(a) Conv Network

64 112 160 208 256
Empty Tiles

0

64

128

192

256
Re

ac
ha

bl
e 

Ti
le

s

(b) Scaling Network

64 112 160 208 256
Empty Tiles

0

64

128

192

256

Re
ac

ha
bl

e 
Ti

le
s

(c) Layer-Scaling Net

Figure 7: Expressive range analysis from scaling twice the same input noise using different network architectures.

designer (figure 8a) completely ignored the small and middle canvas
and started directly manipulating the 16x16 canvas. Figure 9 shows
the 3 different playable levels that were created after designers
communicated a certain goal. In this task, all three designers started
working with a small-scale canvas to get an interesting shape in
the bigger canvas and then completed their levels by modifying the
16x16 canvas. All participants managed to create a level that they
are satisfied with.

Another observation is that the third designer (figure 8c and 9c)
took twice as much time to design their level compared to the
others. We assume that the designer was focusing on having a
highly detailed level (a lot of solid and brick tile mix) on the canvas,
they need to clean some of the up-scaled structures and think about
the locations of each brick tile. For all created levels except figure 9c,
the designers ignored the 4x4 canvas completely. We think due
to the small space of the canvas some designers might have felt
restricted. Finally, we noticed that they all ignored the persistence
function and did not change the default value for it but since none
of them went back and forth between different-size canvases, they
never needed its functionality.

8.2 Questionnaire Results
After participants completed both levels, we asked them a number
of questions and analyzed their responses.

8.2.1 What did you like about the system? Designers liked how
sensible the AI edits are. For example, the first designer tried to
design an unreachable space but the upscaler made sure it would
be reachable by adding holes and/or ladders. They also liked how
it helped them start new ideas and distribute the tiles in different
areas pretty fast. For example, when adding a small ladder near
some platform, the system was able to connect the ladder to the
platform.

8.2.2 What did you dislike about the system? Designers pointed
out that the 4x4 grid was too restrictive for design and that is why
they avoided using it. Going back and forth between scales was
more troublesome than useful especially later in the design process
as the AI was suggesting less polished sections. They also pointed
out that one of the reasons they avoided the scaler is that they are
not familiar with the tool so they did not completely understand
the relationship between changing a small canvas and the upscaler
output.

8.2.3 How could enhancing/scaling levels improve level designers’
workflow and fulfilling their own design goals? For this question, all
designers agreed that the system helped them save a little bit of
time and created a draft version of the level pretty fast. They also
think that it would be more useful if the task was to create a huge
level like 128x128 while controlling a small space like 16x16.
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(a) (b) (c)

Figure 8: Three playable levels designed by 3 different partic-
ipants when asked to design a playable level.

8.2.4 How did you use the persistence function? Since all designers
never went back and forth between different scales, they completely
ignored the persistence function. When we asked them about it,
they acknowledged that they either forgot about it or did not need
it.

8.2.5 What other AI/ML functionality would you like to see in a tool
like this? For future functionality, each designer had an interesting
insight into what might be useful. One of them wanted the AI to
be able to validate the created space and figure out any problems
with their design. Another designer wanted to have more control
over the up-scaled canvas so there is more than one option for
up-scaling. Another suggestion was to provide the user with the
ability to teach the upscaler the meaning behind the small section
so it can upscale it in the same meaningful way. This suggestion is
mostly about making the AI able to recognize the macro-patterns
behind a small design and then be able to produce it on a bigger
scale, similar to studies by Baldwin et al. [1], and Dahlskog and
Togelius [3].

9 DISCUSSION
Any machine-learned design assistance tool will rely on and repro-
duce patterns in the data it was trained on. For some domains, this
might present ethical issues, but in the rather abstract domain of
Lode Runner, the main concerns are to which extent it reproduces
existing levels and constrains the user’s creativity. Informal investi-
gations indicate that the upscaling network does not reproduce any
recognizable part of existing levels exactly. The ability to edit freely
also means that the editor does not constrain the expression of
users, although it can of course bias the user in various directions.

One reason that the designers did not engage much with the
persistence functionality is apparently that we did not explain
it well enough. This is something that needs to be improved on,
given that the main reason why designers did not go back and
forth between scales while editing is the worry that edits they had
already done would be overwritten by the AI. This is exactly what
the persistence functionality is supposed to prevent. Clearly, more
work is needed on how to make this smooth and intuitive.

An important takeaway from the qualitative evaluation is that
the labor-saving aspects of upscaling only really come into play
for large or high-resolution levels. For 16x16 tiles, the effort saved
is rather small. Lode Runner might not be the testbed for this, as
most Lode Runner levels are not larger than those we use here.

(a) (b) (c)

Figure 9: Three goal-oriented levels designed by 3 partici-
pants. The goals were set by the participants and commu-
nicated to us. The goals are (a) create a level with one gold
that the enemy will carry and the only way to win is to trap
the enemy to drop the gold, (b) create a level with at least 3
enemies and 5 golds where one of the gold is trapped, and (c)
create a challenging level with multiple possible paths.

For our new proposed architecture, our quantitative analysis
shows promise in the ability of the network to mimic local patterns
compared to traditional architectures. Having a small canvas and
upscaling it multiple times allows the system to repair its own
mistakes and make sure the generated levels are in distribution.
This allows the system to generate bigger levels, which is the main
takeaway of the qualitative evaluation. We also think that having a
different output for each layer allowed the network to have differ-
ent computation power for different tiles with minimum domain
knowledge (i.e. the order of the tiles). Finally, we think that the
skip connection allowed the system to learn a good relationship
between user input and target output.

While in this study we investigated upscaling as a design assis-
tance functionality in its own right, it is likely that it will be most
efficient and useful as part of a multifaceted AI-powered toolset.
One functionality that would very likely work well in tandem with
the current upscaling (and downscaling) is a repair agent that makes
sure that the generated level is playable. Having a repair function
and a larger level canvas will likely make the tool more usable and
accessible to designers. We believe that the introduced upscaling
method has the potential to be a valuable addition to level editing
tools similar to diffusion models for image editing tools 3.

10 CONCLUSION
We presented Lode Enhancer, a mixed-initiative level design tool
based on the concept of upscaling as design assistance. Upscaling
uses deep neural networks which are trained on artificially down-
scaled patches of existing Lode Runner level segments, meaning
that they have learned common micro- and macro-patterns of Lode
Runner game design. These patterns are then exploited when trans-
forming the missing information of a downscaled level to a more
information-rich upscaled level. We also proposed a new architec-
ture we name layer scaling network and compared it to traditional
architectures. We notice that the new architecture manages to cap-
ture the local patterns better than the other networks. We also
noticed that the trained networks do not allow a small change in
the input to cause severe (undesired or unpredictable) changes in

3https://exchange.adobe.com/apps/cc/114117da/stable-diffusion
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the output level. Finally, we tested our tool through a preliminary
qualitative study involving 3 game designers. All designers agreed
that the tool is very helpful for creating an initial low-res draft
which they can refine at a later stage in a co-creative fashion with
the underlying AI. They also agreed that this tool will be even more
powerful in complex games or larger-scale maps.

Lode Enhancer is the first mixed-initiative co-creativity [22]
prototype that examined and built on the notion of upscaling. We
argue that upscaling is a very important task during level design
as it can accelerate the drafting process of large levels. As future
research steps, we plan to explore how a tool like Lode Enhancer
can operate in more complex games with large levels. Also, we
consider adding more control on the upscaler module such that the
user can have a choice between different versions of the upscaling.
Finally, as the levels created usually require some minor edits from
the user to make them playable the next version of Lode Enhancer
will be equipped with AI agents that can autonomously repair the
upscaled levels and turn them into playable ones.
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