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ABSTRACT

In the context of procedural content generation via machine learn-
ing (PCGML), quality-diversity (QD) algorithms are a powerful tool
to generate diverse game content. A branch of QD uses genetic
operators to generate content (e.g. MAP-Elites). Problematically,
levels generated with these operators have no guarantee of match-
ing the style of a game. This can be addressed by incorporating
whether a level is generable by an n-gram into the fitness function.
Unfortunately, this leads to wasted computation and poor results.
In this work, we introduce n-gram genetic operators, which pro-
duce only solutions that are generable by the n-gram model; we
call MAP-Elites combined with these operators Gram-Elites. We
test on a tile-based side-scrolling platformer, vertical platformer,
and roguelike. For all three, n-gram operators outperform standard
operators and random n-gram generation, finding more usable (i.e.
completable and generable) solutions at a faster rate. By integrating
structure into operators, instead of fitness, these genetic operators
could be beneficial to QD in PCGML.
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1 INTRODUCTION

Procedural content generation (PCG) is the creation of game con-
tent via an algorithm [12]. Its uses can vary from creating levels [3],
to attack patterns [7], to entire games [1], and more. Procedural
content generation via machine learning (PCGML) [15] uses ma-
chine learning algorithms that are trained on existing game content
to generate new content in a similar style. A branch of PCGML uses
quality-diversity algorithms to generate a variety of new content.
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One approach to quality-diversity (QD) content generation is
the MAP-Elites algorithm [10]. MAP-Elites uses genetic operators
to create new solutions that are diverse across multiple behaviors
while optimizing a fitness function. The fitness function evaluates
properties of solutions, such as how completable a generated level is
by an agent. In the context of PCGML, we want solutions generated
by MAP-Elites to also match the learned style of a target game.
N-grams are one approach that has been used to recreate the style
of input training levels in 2D tile-based games [3]. To capture this,
fitness can incorporate generability via n-grams (i.e. whether or not
the n-gram could generate a given solution).

In this way, MAP-Elites can generate a variety of usable levels—
levels that are both completable by an agent and generable by an n-
gram. However, standard genetic operators used by MAP-Elites are
not aware of the n-gram model. This can cause wasted computation
on levels that are not generable, and fewer solutions are found
overall.

In this work, we introduce n-gram genetic operators. For both
mutation and crossover, n-grams are used to modify a given solution.
As a result, a new solution will always be generable by an n-gram.
We call this combined n-gram and MAP-Elites approach Gram-
Elites.

To test the n-gram operators, we use three tile-based games:
Super Mario Bros., Kid Icarus, and DungeonGrams—a roguelike we
developed—and generated short level segments. We compare Gram-
Elites to two variants. The first is MAP-Elites with standard opera-
tors, crossover and mutation. The second places segments gener-
ated by an n-gram into the MAP-Elites grid. For all three games,
Gram-Elites finds more usable segments in fewer iterations.

2 BACKGROUND
2.1 N-grams

To generate segments of levels, we use n-grams [3]. As input, a level
represented as a matrix of tiles is made into a sequence of slices
(e.g. individual columns or rows). An n-gram model can predict
an output given a prior. The prior is sequential and is size n — 1;
making an n-gram a n — 1 order Markov chain. To train the model,
it counts the number of times an output occurs for a unique prior.
The result is a set of probability tables linked to their priors.

Generation with n-grams is done by inputting a prior and get-
ting a weighted output. Weighted refers to using the counts from
training to determine the likelihood of each output. The prior is
updated by removing the oldest member and adding the new out-
put. This maintains the order of the sequence. To stop generation,
either the desired length is reached or the n-gram reaches an un-
seen prior [14]. An unseen prior is a prior that was not seen in the
training data; the n-gram has no valid output.
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Figure 1: Visualization of n-gram genetic operators. Both operators build a connection (green Cs) to the other side to maintain
a full segment with no bad n-grams. The mutation operator removes one slice and uses the n-gram to generate a replacement

(purple G) before the connection is built.

2.2 MAP-Elites

MAP-Elites [10] is a QD algorithm that encourages behavioral
diversity to find the best solution. MAP-Elites maintains a map
of k dimensions where each dimension represents a behavioral
characteristic of a solution (e.g. the number of enemies in a level).
The map is discretized, to a given resolution, into bins. A bin can
contain multiple solutions (called elites). In this work, we limit the
size of a bin to one.

MAP-Elites starts with initial population generation. A set num-
ber of random solutions are placed into bins based on their behav-
ioral characteristics. If the bin associated with the solution is empty,
the solution is placed into it as its elite. If the bin is not empty, the
fitness of the elite in the bin and the fitness of the new solution are
compared. The one with the best fitness is placed into the bin. After
the initial population generation, MAP-Elites runs for a set number
of iterations. For each iteration, it selects bins and runs genetic
operators on the elites. The default selection strategy is random,
but there are many other approaches, see work from Gravina et
[5]. After the operators run, the new solutions are placed into their
associated bin if possible.

3 RELATED WORK

Procedural content generation via machine learning (PCGML) [15]
is the generation of content by trained models. An early example
comes from Dahlskog et al. [3], which used n-grams for Mario
level generation. For input, they convert a grid representation of a
Mario level into a list of columns. They found that generated levels
tend to be completable and match the style of the input corpus.
n = 3 produced results that were both in line with the style of a
Mario level while still appearing to be novel. When n is too large,
generated content will feature long, memorized sequences that do
not diverge from the input corpus.

Work from Withington showed that MAP-Elites can generate
Mario levels by using a binary representation for whether a block
exists or not [17]. The generated segments are completable, but
they do not look or feel like a Mario level. Khalifa et al. [6] address
the problem of structure by using Constrained MAP-Elites [7]. This
builds off of FI-2Pop [8] to have valid and invalid levels inside of
every bin. A level is evolved to be completable by an agent in the
infeasible population. In the feasible population, levels are evolved
to be as simple as possible. This is another way of assessing structure
that differs from our approach.

Fontaine et al. [4] show how a quality diversity search can work
with a generative adversarial network (GAN). Instead of evolving
levels, they evolve vectors as input into the latent space of the GAN.
The GAN’s objective is to output levels that match the structure of
the target game.

In our work, we look at how n-grams can improve MAP-Elites
for level generation. Previous work from Lo et al. evolved musical
sequences [9] by using a complex fitness function that included n-
grams to assess the likelihood of a given sequence. In the context of
music, it can be beneficial to evolve a sequence that is not generable
by an n-gram.

4 N-GRAM OPERATORS

While standard operators can be used in MAP-Elites, they are not
aware of the n-gram model and can create sequences impossible for
the n-gram to generate. To address this, we developed n-gram opera-
tors for mutation and crossover; see Figure 1. The n-gram operators
are designed such that given input sequence(s) that are generable
by the n-gram, the output sequence(s) will also be generable.

Both operators rely on a concept we call connection. To combine
two sequences, we build a connection between the two. This is built
using the last n—1 slices of the starting sequence (start prior) and the
first n — 1 slices of the ending sequence (end prior). The connection
is built using a breadth-first search on the n-gram. It starts from the
start prior and searches for a path to the end prior. Note that for
the approach to work, such paths must exist between priors in the
n-gram, and thus relies on using an n-gram that has at least one
path between the start and end prior. We can guarantee that a path
exists if the n-gram is strongly-connected. An n-gram is strongly-
connected if and only if every prior has a path to every other prior
in the n-gram. The breadth-first search creates a, potentitally empty,
sequence of slices that connects the two original sequences. With
connection, we can create the operators n-gram mutation and n-
gram Crossover.

N-gram mutation chooses a random point in a sequence. The
random point is bounded by the requirement that there must be
n — 1 slices on either side of it. The slice at this point is removed. A
new output is generated using the last n — 1 slices of the sequence
to the left of the point. The new output updates the start prior. The
start prior is used to connect the two sequences around the random
point. See Figure 1 (top).

N-gram crossover receives two parent segments and finds a
crossover point. This point has the same requirements as mutation.
The point is selected randomly but there must be n — 1 slices on
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Figure 2: Example segments generated with Gram-Elites for all three games. The top shows segments from around the four
corners of the MAP-Elites grid to the extent found for each game. The bottom left of each is a simple level, based on behavioral
characteristics, and top right is more complex. The bottom shows segments from near the middle of those found in the grid.

either side of the point for both parent segments. Crossover is run
with both segments with only one difference: we build an n-gram
connection between the two segments. See Figure 1 (bottom).

Both of the n-gram operators can increase the size of a sequence.
The case for increasing the size of a sequence is shown in Figure 1.
To enforce a fixed sequence length, slices past the maximum length
are truncated for both operators.

5 GAMES

In this work, we use three different games: Mario and Icarus, plat-
former games, and DungeonGrams, a roguelike dungeon game we
developed. All three games use the same two-part fitness func-
tion f(s). In the first part, an agent plays the game, and returns
a completability score C(s) € [0, 1] for any level segment s. This
represents the percent that an agent can complete segment s. In all

games, the segment is padded with slices on each side when testing
completability, as a proxy for the segment being completable as
part of a larger level. The second part is the number of bad n-grams
in the level, B(s) € Ny. A bad n-gram is the result of an unseen
prior or an unknown output given a valid prior. The final fitness
calculation of a segment is f(s) = B(s) + 1 — C(s). In this work,
MAP-Elites aims to minimize f(s); a segment s is usable if f(s) = 0.

5.1 Mario

N-gram. The n-gram for Mario uses the Super Mario Bros. levels in
the Video Game Level Corpus [16] that are not underground, do not
have moving platforms (the grid representation does not capture
the behavior well), and do not have springs (they are not present
in the processed map files). The length of all generated segments is
25. Based on the work from Dahlskog et al. 3], we use 3-grams.
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Completability agent. Completability of Mario levels is evaluated
using a modified version of the Summerville A* agent [16] which
now finds the furthest point that an agent can reach. C(s) is the
maximum x-coordinate the agent reached divided by the number
of columns in the level.

Behaviors. The behavioral characteristics are linearity and le-
niency [13]. Linearity is calculated by finding the minimum height
for every column and finding the line of best fit. For every minimum
height, the absolute value of the difference between it and the line
of best fit are calculated. This is divided by the maximum linearity
for a level segment to give a percentage. Leniency is calculated
based on whether a column contains an enemy (+1/2) or contains
a gap (+1/2) for a max score of 1; for a score of 1, a column must
contain an enemy and a gap, not two enemies. This value is divided
by the number of columns in the level to get a percentage. We use
a resolution of 40 for each behavior.

5.2 Icarus

N-gram. The n-gram for Icarus uses the Kid Icarus levels in the
Video Game Level Corpus [16]. Icarus uses rows for slices and n = 2
for more variety based on past work [2]. The height of all generated
segments is 25.

Completability agent. Completability is evaluated using a modi-
fied version of the Summerville A* agent [16] which now finds the
highest point and can wrap around in the x-direction. C(s) is the
highest y-coordinate the agent reached divided by the number of
rows in the level.

Behaviors. The behavioral characteristics are density (percent
of solid blocks) and a modified leniency. Every row is evaluated
for containing a door (+1/3), a moving platform (+1/3), and an
enemy (+1/3) for a max score of 1. The final leniency is divided
by the number of rows in the level to give a percentage. We use a
resolution of 35 for each behavior, with a maximum of 0.5 for each
dimension.

5.3 DungeonGrams

DungeonGrams is a roguelike built for this project. The player
traverses a top-down dungeon to reach the exit. Movement is turn-
based on a discrete grid. For the player to win, they must hit every
switch to unlock a portal and then go through the unlocked portal.
Along the way, the player will have to correctly navigate, avoid

30000

40000 50000 10000 20000 30000

teration

40000 50000

DungeonGrams

Plots of usable segments per iteration for each game. Plots show the average and 95% confidence interval for 100

spikes, and avoid enemies. The enemies can move every other turn.
Each enemy stays near its spawn point and will move toward the
player if the player is within a few tiles of that point; otherwise, the
enemy will move back to their spawn point. If the player collides
with a spike or enemy, they lose.

Training levels. We manually designed a set of 44 small levels for
DungeonGrams with 11 rows each. We intentionally designed these
levels to have repeating patterns that an n-gram model could make
use of. All generated segments are length 15. DungeonGrams used
3-grams.

Completability agent. The DungeonGrams agent uses an A*-based
pathfinding algorithm to hit the switches, avoid enemies and spikes,
and reach the exit. The state space is large enough that a full search
becomes too time-consuming. For quicker evaluation, we made the
agent greedy and put in a search space limit based on the size of the
level being solved. Completability is 1 if the agent can beat the level.
Otherwise, completability is 0.9 % ((agsw + (agmx /1vw))/(Vsw + 1)),
where ags,, is the number of switches the agent hit, agpx is the
maximum x-coordinate the agent reached, lv,, is the width of the
level, and lvs,, is the number of switches in the level. There are
cases where the agent can get all the way to the right of a level
and hit all the switches but still not beat a level, and scaling by 0.9
distinguishes these from when the agent does beat the level.

Behaviors. The behavioral characteristics are density (percent of
solid blocks) and a modified leniency. Every column is evaluated
for containing an enemy (+1/3), a spike (+1/3), and a switch (+1/3)
for a max score of 1. Note that the existence of two enemies in the
same column would only add 1/3 and not 2/3 to the score. The final
leniency is divided by the number of columns in the level to give a
percentage. We use a resolution of 20 for each behavior, with the
one modification that the max leniency is 0.5 instead of 1 which
tightens the search in that dimension. A smaller resolution is used
since a smaller segment size is required for speed.

6 EVALUATION

To evaluate n-gram operators, we tested MAP-Elites with n-gram
operators (ME-NGO, or Gram-Elites), MAP-Elites with standard
operators (ME-SO), and MAP-Elites binning with only n-gram gen-
eration (NG) on Mario, Icarus, and DungeonGrams. Each ran a total
of 50, 000 iterations with an initial population, generated with an
n-gram, of 500. To get an average, we ran each a hundred times.
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Figure 4: MAP-Elites grid for all three algorithms and games over 100 runs. The value is the percentage of runs that found the

bin.

For ME-SO and ME-NGO, two parents were selected randomly and
cross-over was always performed. Each child sequence had a 2%
chance of mutation. NG randomly generated a new segment using
the n-grams each iteration. For fitness calculation, Vs : B(s) = 0 for
NG and ME-NGO.

Example segments generated with Gram-Elites can be seen in
Figure 2. For Mario, in the segment with higher linearity and higher
leniency, the player’s path appears fairly linear. This occurs because
the linearity calculation is not based on the path but the lowest
block in each column. For Icarus, higher leniency and lower density
shows that repeating patterns are sometimes used to reach a target
behavioral characteristic. For DungeonGrams, we can see that spikes
can be used to get higher leniency.

Figure 3 shows the average number of usable bins found after
each iteration for the hundred runs. For Mario, NG is the worst
performing model. It does not appear to converge at the max itera-
tion count. ME-SO quickly finds levels and has diminishing returns
around 20, 000 iterations. ME-NGO is the fastest to find the most
levels and also has diminishing returns around 20, 000 iterations. In
Icarus, ME-SO is slow to find levels and does not appear to converge
by 50, 000 iterations. However, ME-NGO finds the most levels in
the fewest iterations. NG is faster to find levels than ME-SO initially
but is overtaken after 20, 000 iterations. Lastly, for DungeonGrams,
ME-SO performed the worst. ME-NGO converged at about 20, 000
iterations. NG did not appear to converge after 50, 000 iterations
and caught up to ME-NGO.
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Figure 4 shows the MAP-Elites plots for the hundred runs. Each
bin shows the percent of times it was filled with a usable elite. For
Mario, ME-NGO and ME-SO fill a similar space. ME-NGO, though,
does fill in a larger space than ME-SO and finds more levels on
average. Both clearly outperform NG. For Icarus, the difference
between the algorithms is most clear. ME-NGO fills in the largest
portion of the grid, and is close to filling in the horizontal axis.
ME-SO fills in less. It is also the most variable in terms of whether
or not a level is found. NG fills in less space than both ME-SO and
ME-NGO. DungeonGrams has the least variance between the three
methods. ME-NGO fills in slightly more space than the other two
but not by much. This may partly be due to the use of a smaller
resolution.

A common metric used to assess MAP-Elites is the QD-Score
[11]. This score is the sum of the highest fitness values found in
every bin in the grid. Its goal is quantify both quality and diversity
found after a MAP-Elites run. We do not use it for two reasons.
First, we are minimizing, not maximizing, which means a large
QD would be bad in our case. Second, quantifying an empty bin
as the max number of bad n-grams plus one could be overly harsh.
The combination of these yields the fact that a QD-score would be
misleading in our use case, and thus we did not use it.

7 CONCLUSION

In this work, we present Gram-Elites: an extension to MAP-Elites
that uses n-gram based population generation and n-gram opera-
tors for mutation and crossover. We compare Gram-Elites to two
baselines: MAP-Elites with standard operators and n-gram gener-
ation with placement into a MAP-Elites grid. We test with three
games and find that Gram-Elites finds more usable segments, in
fewer iterations.

One property of the current approach is that the n-gram opera-
tors do not take into account the likelihood of a particular sequence
according to the n-gram, just that it can be generated. This may
allow it to generate more unlikely “extreme” sequences in those
areas of the bin, but also not reflect the distribution of slices in
the training data. Incorporating the likelihood of a sequence being
generated as a MAP-Elites behavior might help address this.

For Gram-Elites to work, there must be a path from the start
prior to the end prior. In the case of Mario and DungeonGrams, both
n-grams are strongly connected; there exists a path from every
prior to every prior. In the case of Icarus, though, the n-gram used
has “dead starts” or priors with no incoming edges. Because the
current implementation chooses mutation and crossover points
from the middle, these dead starts can only appear at the start of
any segment. This, though, is problematic since no segment will
ever have a different start prior. In future work we plan to address
this by modifying crossover and mutation. When this change is
made, the n-gram built for Icarus will, in theory, yield segments
that cannot be connected. To address this we will prune the n-gram
to be strongly connected.

To extend this work, we want to build a method to analyze an
input corpus for different sizes of n-grams. The analysis will find
the best n to produce recognizable structures without memorization.
It may also be interesting to characterize the performance of ME-
NGO relative to ME-SO based on structural properties of the n-gram,

Colan F. Biemer, Alejandro Hervella, and Seth Cooper

such as the number of outputs for each prior. More immediately,
we intend to use Gram-Elites to build larger levels by connecting
segments in the MAP-Elites grid, and improve the linearity metric
for Mario to use naive path-finding.
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