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ABSTRACT
Surprise is a key factor for driving engagement in video games. By
incorporating unexpected elements, games can create a sense of ex-
citement and curiosity, leading to a more immersive and enjoyable
experience. In this paper, we propose a framework for generat-
ing levels in 2D platform games with embedded surprising content.
Building upon the VCL (Violation of Expectation, Caught Off Guard,
and Learning) model, we use it as a conceptual foundation to curate
surprise by altering specific game elements (called metrics) during
the level generation process. We developed a tile-based parametric
level generator for Super Mario Bros., creating customized levels
based on metrics such as linearity, enemy density, and pattern
variation, among others. 393 participants in our study played 2
generated levels, with the first setting expectations and the second
intentionally violating them by altering chosen metrics. By com-
paring player responses and gameplay data with the VCL model,
we explore the phenomenon of surprise in games. Our findings
reveal statistically significant correlations between certain metrics
and player responses, teasing at the potential for automatically
generating surprising levels in 2D platform games.
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1 INTRODUCTION
Games are a significant form of interactive entertainment, with
65% of Americans engaging across platforms like PC, console, and
mobile [32]. Creating game content requires substantial manual
effort, prompting interest in automated content generation. How-
ever, procedurally generated content often lacks diversity, leading
to player disengagement as seen in games like No Man’s Sky [9].
We assert that the key issue lies in the failure to establish emo-
tional connections with players. Incorporating surprising elements
in games enhances player engagement and demand for new con-
tent. Surprise enhances emotions, learning, and adaptation [21].
By infusing surprise into generated content, developers can foster
deeper player connections and sustain engagement.
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The VCL model [3] proposes that surprise in games is unique
due to their interactive nature and player agency. It defines surprise
as a sudden moment eliciting verbal, nonverbal, or physiological
responses triggered by the violation of player expectations. Accord-
ing to the VCL model, surprise arises when an event challenges
deeply ingrained beliefs, influenced by real-life and gaming expe-
riences. The intensity of surprise is determined by the degree of
belief change, quantified by the divergent factor (DF) - the differ-
ence between prior and post-event beliefs. However, the model
faces challenges in quantifying qualitative information about DF,
which limits its ability to predict player surprise. DF is influenced
by factors such as past player experiences and personality traits.
Improving our understanding of DF could enhance predictive capa-
bilities regarding individual player states in games, facilitating the
creation of personalized surprising content tailored to each player.

In this work, we address this limitation of VCL model by gaining
insights about the DF of an event. More specifically, we empirically
analyze what degree of change in beliefs (due to a change in level
geometry) is needed to evoke a surprising reaction from a player.
Additionally, we are interested in exploring why surprise is per-
ceived differently among players. For example, why one game’s
level geometry might appear surprising to a player, but another
player finds the same level normal. We developed a tile-based level
generator of the popular game, Super Mario Bros, called Science
Mario, as test bed for our experiments. Developing a new level
generator tool for our research, allows us to alter chosen metrics
(linearity, density of enemies, density of game elements, pattern
variation, density of gaps, player speed, and gravity [16]) that affect
level geometry or mechanics to suit our experimental needs. While
existing level generators exist for games, they lacked the specific
functionalities and capabilities required for our experiments. Our
developed level generator accepts input in the form of an alphanu-
meric matrix, where each value corresponds to a particular element
in the game (For example: pipe, goomba, etc.). As Super Mario Bros.
is a popular game, players have often already played it, and are
aware of the game’s geometry and mechanics, thereby developing
strong beliefs about the game.We hypothesize that a sudden change
in the chosen level metrics affecting the game’s geometry or me-
chanics will violate the prior beliefs, thereby inducing a surprising
reaction from the player.

We generated a total of 49 levels, with 7 levels generated for
each chosen metric. The first level, referred to as the base level,
maintained a fixed value for the metric to emulate the player expe-
rience of the original Super Mario Bros. The subsequent 6 levels
were generated with varying values of the metric, ranging from 0
to 1. Detailed information about our level generator, Science Mario,
and the metrics used are provided in a later section (Section 4). For
our study, participants were asked to play 2 generated levels of
the game and complete an online form recording their experience
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playing the game. Each player was randomly assigned a metric and
played the base level first, followed by another randomly generated
level with the altered metric. We ensured each generated level was
playable, meaning it could be completed by a player, and balanced
the study to have 8 participants per level combination. We ana-
lyzed player surprise perception during gameplay changes using
our developed generator. Metrics were controlled using parameters
that accepted values between 0 and 1. For e.g., in the ’density of
enemies’ metric, 0 represented no enemies in the generated level,
while 1 represented an enemy at every possible platform tile in the
level. We make the following contributions in this work:
(1) Exploration of VCL model of surprise, gathering insights about
divergent factor of an event. In other words, what makes an event
surprising to a player? (2) Framework for generating levels with
embedded surprising content in 2D platforms. (3) Tile-based Super
Mario Bros. level generator (Science Mario).

2 RELATEDWORK
Surprise, considered one of the six basic human emotions, is univer-
sal and typically correlates positively with engagement [7]. Given
the exponential growth of video games as a form of entertainment,
understanding surprise in this context is crucial. Researchers have
extensively analyzed the impact of video games on human emo-
tions [4, 6, 22, 26], recognizing surprise as pivotal for enhancing
player engagement, immersion, and enjoyment. Additionally, sur-
prise boosts emotional responses and increases replayability in
games [4, 19, 20]. Our review of prior research highlights a gap in
understanding how individual players perceive surprising events,
hindering the development of controlled and engaging levels, espe-
cially in the realm of 2D platformers.

Ely et al.[8] described surprise as a way of revealing information
over a period of time, defining surprise as the deviation between
current beliefs and previous expectations over time. A concept ex-
plored across various domains including casinos, politics, literature,
and games. This concept was formalized into the Expectancy Vi-
olations Theory (EVT)[2], explaining how unexpected behaviors
in social settings evoke surprise. EVT originated in the context of
Proxemics, the study of human spatial requirements and population
density’s effects on behavior and communication [14]. Gross [13]
proposed a related theory linking ignorance and surprise, empha-
sizing the benefits of incorporating surprise and ignorance into
design processes. This theory suggests that awareness of ignorance
startles individuals, highlighting the gap between sensory percep-
tions and environmental awareness [30]. The VCL [3] model of
surprise integrates these theories, shaping a comprehensive under-
standing of surprise in games. Another model of surprise, surprise
search [11, 36] uses an evolutionary algorithm that values unex-
pected behaviors over unseen ones. It uses a prediction model to
anticipate outcomes and rewards deviations from expectations. This
mirrors a self-surprise process, favoring individuals diverging from
evolutionary trends to shape new ones. The algorithm outperforms
other methods in deceptive problems and maze navigation tasks,
but has limited applications in the context of 2D platform games.
It consists of two modules: a predictive model based on past be-
haviors and a distance formula measuring deviation from expected
outcomes. Similar to VCL model, the surprise search prediction

model generates a speculative ’current’ population based on previ-
ous generations, considering local or global behavioral information.

Generative methods [5] are functions that produce new artifacts
by manipulating user-provided tuning values, static assets (like
3D models or audio samples), or higher-level inputs. These inputs
are processed by a generator, a central component that combines
and composites them to create a set of artifacts. Traditionally, the
"generate and test" approach has been prevalent in computational
creativity research. On an individual level, creators generate ideas
and test them against domain knowledge until they find one that
meets their personal criteria [34]. Hooshyar et al.[15] demonstrated
that quantitative models of player experience can accurately predict
player affective states using gameplay metrics and level parameters.
They applied this to a procedurally generated version of Infinite
Mario Bros[33]. Yannakakis [37] proposed camera control as crucial
for adaptive interaction in games, correlating camera position with
player responses and affective states using biometric inputs. Smith,
Whitehead, et al.[29] analyzed platformer level components and
structures to understand level design and challenge areas. Player
experience modeling[25] employs predictive models to anticipate
player behavior and preferences, often using machine learning al-
gorithms [31]. Smith et al.[28] developed a taxonomy of player
modeling techniques, while Yannakakis et al.[35, 38] discussed var-
ious approaches, including model-based and model-free methods.
Quality-diversity algorithms [10] prioritize both quality and di-
versity in procedural content generation, diverging from standard
evolutionary algorithms. Surprise-driven content creation [12] en-
hances player engagement by introducing surprise-based evolution-
ary search methods, as demonstrated in Unreal Tournament III for
weapon generation. In contrast, our research delves into surprise as
an emotion, specifically examining its correlation with level geom-
etry and mechanics in 2D platform games. While existing studies
shed light on surprise as an emotion experienced in media and its
detection from various sensory inputs, many questions regarding
surprise in video games remain unanswered. Further discussion
and research are needed in this area.

3 VCL MODEL OF SURPRISE
Chakraborttii et al. [3] introduced the VCL framework for modeling
surprise in games, building on two established theories: expectancy
violations (EVT) [1] and the theory of ignorance and surprise [13].
In the context of video games, EVT explains how players experience
surprise when their existing beliefs about the game world (their
expectations) clash with what they actually encounter, resulting in
a discrepancy. The second theory posits that surprise occurs when
a previously unnoticed event suddenly enters the player’s focus,
often due to the limitations of human sensory and perceptual abili-
ties. The VCL model integrates these two theories, proposing that a
surprising event in video games occurs when one of the following
conditions is met:

(Either) The player’s expectations are suddenly violated.
(Or) The player is caught off guard.
(And) The event triggers learning.
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Figure 1: A sample generated level in Science Mario

The occurrence of surprising events in games depends on the
player’s beliefs and prior experiences. When starting a new game,
players draw on their existing knowledge and beliefs, acquired
through past gaming experiences, to inform their actions. This re-
liance on prior beliefs is a key aspect of the VCL model. According
to the VCL model, an event is considered surprising if it deviates
significantly from the player’s initial beliefs. The Divergent Factor
(𝑑) measures this deviation, representing the difference between
the player’s beliefs before and after an event (𝐸). If 𝑑 exceeds a
player-specific threshold (Δ), the event is perceived as surprising.
The significance of the event, quantified by the Divergent Factor
(𝑑 = 𝐷𝐹 (𝑃, 𝐸)), can vary between players (P1 and P2) due to indi-
vidual differences in experience, adaptability, and personality [27].
Currently, the VCL model is theoretical, and defining how to calcu-
late 𝐷𝐹 and Δ is a challenge. To address this, we conduct experi-
ments with players to gather insights and inform the development
of the VCL model.

4 TEST BED: SCIENCE MARIO
We created a level generator, Science Mario, inspired by Super
Mario Bros, to generate levels for our user study. We chose Super
Mario Bros as our testbed due to its established reputation in the
research community, where it has been extensively studied [18,
24]. The availability of level generators [18] and simulation agents
makes it an ideal choice. Moreover, the game’s rich history ensures
that most participants will have prior experience and expectations,
providing a valuable foundation for our experiments. Figure 1 shows
an example of a generated level. We built a parametric, tile-based
level generator [16] utilizing a genetic algorithm (GA) [23], a class of
evolutionary computation techniques that mimics real life evolution
used in prior work to generate the levels. The approach is based on
natural selection and is commonly used in search problems with
exponential growth that leads to the impossibility of testing all
potential solutions. This approach is flexible and can potentially
generate a large number of diverse levels. The reason for building
a new level generator was to generate parameterized custom levels
based on the metrics chosen for the purpose of the user study.

The generator accepts an alphanumeric matrix as input where
each matrix value corresponds to a particular element in the game
(For example: pipe, goomba, etc). The GA begins with an initial

population of alphanumeric matrices (levels) with chosen values
to simulate a regular level. The matrix had a fixed number of rows
of 30 (fixed width) and a variable number of columns between
120-300 (representing variable length). A fitness function is defined
to evaluate each level based on desired metrics such as linearity,
connectivity, and player experience with given constraints, assign-
ing a score based on time to complete each level (by a bot) with
lower scores indicating better levels. The fittest levels are selected
to reproduce and form the next generation, simulating natural selec-
tion. Crossover (recombination) is performed between two selected
levels to create a new level, and random mutations are applied to
introduce diversity and escape local optima. The least fit levels are
replaced with the new levels generated, and the process is repeated
for a predetermined number of generations or until a satisfactory
level is generated. This approach can generate diverse levels that
satisfy the desired metrics, and the parameters of the generator
(metrics) control certain characteristics of level geometry or me-
chanics, allowing the GA to search for optimal combinations to
generate high-quality levels. The values of the metrics are normal-
ized to accept values on a scale between 0-1. We chose the following
metrics because they were used previously to evaluate procedural
level generators, as in the Mario AI Framework [16]. The metric
values were chosen in the range between 0.12 - 0.88 skipping the
extreme cases with values of 0 and 1. The threshold difference was
computed by dividing the number of levels + 1 by 1.0 and then
using multiples of the threshold difference. We manually played
through each of the generated levels to ensure the levels can be
completed.

A. Linearity: This metric, derived from the R2 goodness-of-fit
measure, evaluates the linearity of a level by fitting a line to the
endpoints of each platform [16]. High linearity indicates levels
where the player navigates primarily along a straight path towards
the goal, while low linearity suggests more varied terrain, requiring
the player to traverse curved paths between platforms. Altering the
linearity impacts the level’s structure and flow, shaping the player’s
perception of progression and exploration.

B. Density of enemies: Similar to linearity, as introduced by
Horn et al. [16], this metric gauges a level’s difficulty for players.
It is computed by dividing the total number of enemies in the
level by the level width. Modifying the density of enemies directly
influences the challenge and intensity of the level, impacting player
engagement and strategic choices.

C. Density of game elements: This metric quantifies the den-
sity of game elements in a level, with a higher value indicating more
game elements present. Adjusting the density of various game ele-
ments, including power-ups and obstacles, can diversify gameplay
experiences and affect how players interact with the environment.

D. Pattern variation: Pattern variation measures the diversity
of game elements in a level, encompassing enemies and game el-
ements. A value of 1 guarantees all game elements occur, while
0 signifies no variation. Incorporating varied patterns in levels
ensures dynamic and unpredictable gameplay, sustaining player
engagement and preventing monotony.

E. Gap density: This metric computes the gap frequency by
dividing the number of gaps by the level width. A gap intensity of
1 signifies the maximum number of gaps necessary for completing
the level. Higher values indicate more gaps or tiles within the level.
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Figure 2: Methodology

Adjusting the density of gaps or obstacles influences the platforming
dynamics, prompting players to navigate and jump strategically,
thereby enhancing skill and tension during gameplay.

F. Player Speed: This metric reflects the player’s movement
speed, with lower values indicating slower movement. We set upper
and lower threshold limits at 10𝑥 and 0.1𝑥 of the regular playing
speed (normalized as 1 and 0 respectively). Player speed influences
gameplay pace and intensity, affecting reaction time and decision-
making for players.

G. Gravity: This metric signifies the gravity experienced by the
player. Lower gravity values lead to higher jumps and longer jump
times and distances. Like Player Speed, we set upper and lower
threshold limits at 10𝑥 and 0.1𝑥 (normalized as 1 and 0). Adjusting
gravity mechanics can substantially affect player movement and
control dynamics, thereby shaping the overall feel and gameplay
responsiveness.

5 USER STUDY
We recruited 393 participants (198 male, 183 female, and 14 others)
for the user study through Amazon Mechanical Turk. Participants
ranged in age from 18-65 and were compensated $2.02 on aver-
age for approximately 15 minutes of time. The interaction context
was in English and the participants were recruited from English-
speaking countries only (United Kingdom, Australia, Canada, USA,
New Zealand). The study was held online and hosted on an Amazon
EC2 server. As mentioned earlier, we generated a total of 49 game
levels for our experiments, 7 levels for each chosen metric. Each
metric was given an alphabet between A-G. The base level had a
mean value (0.5 in a normalized scale between 0-1) and simulated
a normal level from the original Super Mario Bros. game. There
were 3 levels (L 1-3) generated with greater value than the mean
for the metric. Similarly, the last 3 generated levels (L 5-7) for the
metric, had a lower value than the mean with L4 representing the
base level. Each player was randomly assigned a metric (say gap
density E), and they first played the base level for the metric (E4),
followed by another generated level (say E6) for that metric (gap
density) assigned randomly. In this case, the gameplay sequence of
Base Level (E4), followed by E6 level (E4-E6) for gap density repre-
sented a unique combination of levels. Similarly, E4-E1 represented
another combination of levels.

To accurately capture the impact of change for a particularmetric,
all other metrics are kept fixed. For example, if a player is assigned
a metric (say gap density), only the gaps in the level will change,
while all other metrics (such as linearity, pattern variation, etc.)
are fixed for both levels. We balanced the user study and ensured
that there were 8 study participants per combination of levels for
each metric. After the game, the participants completed the online
form where they reported the intensity of perceived surprise for

each of the levels played using a Likert scale [17] - where a surprise
value of 1 referred to no surprise being experienced by participants
and value of 7 – to the highest level of surprise. We also collected
data regarding demography, prior gameplay experience, and genre
experience (experience of playing similar 2D platform games). The
end-to-end process is described in Figure 2. To test our hypotheses
introduced earlier, we measure the difference in the absolute value
of the chosen metric between the levels simulating the divergent
factor between the levels (recorded as DF value corresponding
to each level combination). The base level was meant to set the
expectations of the game (representing a typical game) and the
second level was meant to violate the expectations by changing the
metrics and surprise the players. The goal of the user study is to
explore the extent of change required in a level to curate surprise,
i.e, divergent factor (DF) of an event. We are also interested in
finding out how DF varies between players by relating to their
past gameplay experience allowing us to consistently and precisely
generate embedded surprising content in future games.

6 RESULTS
This section describes the data collected from the user study and
our analysis to gain more insights into the applicability of the VCL
model. Figure 3 shows how the intensity of perceived surprise
varied for each metric using a box chart. The x-axis represents the
average intensity of surprise reported by the participants for that
particular combination of level and the y-axis shows the chosen
metric (A-G). From the figure, it’s evident that altering the level
led to varying levels of perceived surprise intensity for different
metrics among players, highlighting the individualized perception
of surprise. Additionally, our analysis revealed that the intensity of
surprise varied significantly between metrics, with some metrics
eliciting higher surprise values. This suggests that certain game
elements, such as level geometry or enemy density, have a greater
impact on player surprise than others. Furthermore, the unique
combinations of levels played by each player resulted in a range of
surprise values, indicating that player experience and expectation
play a significant role in perceiving surprise.

Figures 5-7 show how the intensity of reported surprise varies
with changing values of a chosen metric. The x-axis corresponds
to the ID of the generated levels and the y-axis corresponds to the
average value of surprise reported. For each metric, the fourth level
represented the base level, with levels 1-3 represented a decrease in
the chosen metric, and levels 5-7 represented an increase in the cho-
sen metric. Each figure displays the absolute change in the metric
value between the two played levels (blue line), represented as the
DF compared to the base level, along with the average difference
in reported surprise (orange line). As the base level(Level 4), was
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designed to emulate a typical Super Mario Bros. level, it was charac-
terized by predictability and a lack of surprises. This familiarity led
to the lowest reported surprise values across all metrics, as players
experienced a sense of normalcy and expectation confirmation.
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Figure 3: Intensity of surprise variation for each metric

Observation 1: Figure 4 shows a common pattern on how the
average value of reported surprise increases with an increase in
DF (absolute change) for 3 metrics - linearity, density of enemies,
and density of game elements. As DF increases due to a change
in the linearity of the level, or density of game elements/enemies,
people get increasingly more surprised. However, this relationship
is non-linear and varies based on the chosen metric. Peaks in sur-
prise occur at specific levels of change, indicating sharp alterations
evoke heightened reactions. Players feel more surprised if the level
changes (DF) sharply from a certain level (base level in this case),
showing peaks at A1 and A7 (for linearity), B1 and B7 (density of
enemies), C1 and C7 (density of game elements). This is because
the change in DF is highest for levels 1 and 7 (with base level 4)
resulting in a highly altered level.

We also notice that lower linearity in the level surprised more
players than the lower density of game elements and enemies in-
dicating a change that results in an easier level for the players is
less surprising than difficult levels. Players reported more surprise
when they see a high number of different game elements or ene-
mies, compared to the base level. This shows that a player has a
belief about a level that will have some reasonable variation in the
game elements. When this expectation gets violated, players get
surprised. This happens when a player encounters a higher change
in the appearance of these game elements. Upon running one way
ANOVA test for the above-mentioned metrics, with Level ID as the
independent variable and average surprise value as the dependent
variable, we found there is a statistically significant relationship
[F(1, 764) = 4.18, p < 0.05] between group combinations for linearity
( i.e, between Base-A1, Base-A2, Base-A3 and so on) and density
of enemies [F(1, 764) = 5.27, p < 0.05] but not for density of game
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Figure 4: Average reported intensity of surprise variation
with level linearity (top left), density of game elements (top
right) and density of enemies (bottom)

elements [F(4, 35) = 1.32, p > 0.05]. Thus, we can argue that there
is a statistical significance in the intensity of surprise between the
levels for the metrics - linearity, and density of enemies. The find-
ings support the VCL model’s emphasis on expectation violation, as
players reported more surprise when encountering a high number
of different game elements or enemies, violating their belief about
reasonable variation in the game elements. The statistical signifi-
cance in the intensity of surprise between levels for linearity and
density of enemies further reinforces the VCL model’s applicability
in understanding player surprise in video games.

Observation 2: For metrics pattern variation and density of gaps
(Figure 5), we see a trend that shows players got more surprised as
DF is increased, but there are exceptions to this in DF value for levels
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Figure 5: Comparing avg reported surprise intensity with
(left) pattern variation & (right) density of gaps

D1-D3 and C2-C4 respectively for these metrics. Thus, we can infer
only a weak relationship between these metrics and DF. Players
reported more intensity of surprise when the pattern variation and
density of gaps is much higher than the base level (D7/ E7). This
means that if the game elements are all the same, players get less
surprised, but are more surprised when there exists a huge number
of different game elements in a level. For density of gaps metric,
we see that there is a high increase in the average value of surprise
suddenly (after E5). So, as the gap frequency (DF) increases after a
certain threshold, people tend to feel more surprised. Super Mario
games generally have a lower number of gaps in the initial levels,
violating which might be the reason why people got surprised
more. Moreover, the finding that players reported more intensity
of surprise when the pattern variation and density of gaps were
much higher than the base level (D7/E7) reinforces the VCL model’s
proposal that surprise occurs when players are caught off guard.
The sudden increase in surprise after E5 for the density of gaps
metric also supports the VCL model’s learning trigger condition,
as players adapt to the changing game elements and experience
surprise when their expectations are violated.

Observation 3: Figure 6 shows how a change in the physics
metrics of the level affects surprise. Compared to the other met-
rics, we see a higher reported surprise with any change to the
base level (representing normal physics). People reported being
most surprised when DF is highest (G1-G7, F1-F7) with a consistent
increase in surprise with increasing change. This shows players
have a strong belief about the physics of the game which affects
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Figure 6: Comparing avg reported surprise intensity with
(left) player-speed & (right) gravity

the timing of jumps, movement, the strategy of level completion,
etc. Any change requires a strong change in prior beliefs resulting
in a surprising reaction. Upon running one way ANOVA test for
the above-mentioned metrics, with Level ID as the independent
variable and average surprise value as the dependent variable, we
found there is a statistically significant relationship between group
combinations for both the metrics [F(1, 764) = 8.54, p < 0.05 for
Player Speed, and [F(1, 764) = 13.16, p < 0.05 for Gravity]. Thus,
we can argue that there is a statistical significance in the intensity
of surprise between the levels. From Figures 5-7, we can conclude
that a little change to the levels geometry/physics is not perceived
as surprising to players. However, significant changes in chosen
metrics elicit a stronger reaction. We see that only some metrics
reflect statistical correlation with chosen metrics, but variations
are clear for all chosen metrics. Notably, level physics metrics,
such as gravity and player speed, evoke a more pronounced sur-
prise response compared to geometry features and are statistically
significant (p < 0.05). These findings support the hypothesis that
significant changes in chosen metrics lead to heightened surprise
reactions among players, reinforcing the principles outlined in the
VCL model. Based on our findings, we show that the hypotheses
we proposed are valid for the chosen metrics (4 out of 7 chosen
metrics reflect statistical correlation).

Observation 4: We found significant variability in the intensity
of surprise among players, with prior gameplay experience and
genre familiarity influencing surprise perception greatly. Players
reported an average surprise intensity of 2.29, with a wide range of
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1-7, indicating diverse reactions to surprising events. Prior video
game experience was negatively correlated with intensity of sur-
prise, [r(764) = -2.61, p < 0.05] suggesting that familiarity with
game mechanics reduces surprise. Moreover, genre experience ex-
hibits an even stronger negative correlation [r(764) = -3.43, p <

0.05] with surprise perception, particularly in the context of a 2D
platform game, indicating that unfamiliarity with specific game
genres heightens surprise reactions. These results align with the
VCL model, highlighting the crucial role of player expectations and
knowledge in shaping surprise experiences through expectancy
violations and attention shifts.

7 CONCLUSION AND FUTUREWORK
In summary, we developed a tile-based level generator for Super
Mario Bros. that creates custom levels based on various metrics.
A user study was conducted where 393 participants played these
generated levels, and their responses and gameplay data were cor-
related with the VCL model to understand surprise in games. Our
hypothesis, that changing level metrics would elicit stronger sur-
prise reactions, was tested and statistically significant correlations
were found between level geometry metrics and player emotional
responses to surprising events. In the future, we aim to use these
insights to consistently generate controllable and customized sur-
prising levels by applying changes based on chosenmetrics. We also
plan to consider players’ past experiences and gameplay styles in
level generation and explore how combinations of metric changes
affect player surprise.
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