
Exhaustive Exploration Strategies for NPCs

Muntasir Chowdhury and Clark Verbrugge
School of Computer Science

McGill University
Montréal, Québec, Canada

muntasir.chowdhury@mail.mcgill.ca
clump@cs.mcgill.ca..

Proceedings of 1st International Joint Conference of DiGRA and FDG
7th Workshop on Procedural Content Generation

© 2016 Authors. Personal and educational classroom use of this paper is allowed, commercial use requires
specific permission from the author.

ABSTRACT

Automated, exhaustive exploration of game levels is typically based on simple, greedy cov-
erage heuristics, or is directedmore at the problem of locating dynamic targets. In this paper,
we present and analyze a method for creating an exploratory tour guaranteed to uncover all
parts of a 2D map. First, a set of camera points that collectively ensure full coverage are
chosen. A tour visiting these cameras is then constructed using navigation graphs and by
employing heuristics based on distance and visual coverage. We identify the different fac-
tors that affect this methodology through experiments on maps from commercial games.
The strategies proposed can be used by both hostile and non-hostile NPCs in different spa-
tial search scenarios that benefit from full coverage, or to help a player uncover a map in
fog-of-war settings.

Keywords

Artificial Intelligence, Exploration, Agent Behaviours

INTRODUCTION

Non-player characters (NPCs) are sometimes required to explore the game map, either as
a means of ensuring dynamic enemies eventually and naturally encounter players, or con-
tentually, in their role of guards in stealth games. Exhaustive designs are useful in simulating
thorough search, and for ensuring trivial, never-observed spots do not exist. Automatic so-
lutions to fully observing a space are also important to helping players, and may be found
in the use of non-hostile NPCs that assist or guide players through fog-of-war, or as a non-
trivial augmentation to player commands provided in order to reduce the tedium of manual,
exhaustive exploration of large game levels. In complex, obstacle-rich and procedurally
generated game environments, however, exploration strategies that guarantee efficient and
complete coverage, and ideally without excessive repetition are not obvious.

In this work we explore a simple and novel approach to exhaustive exploration in full in-
formation (known), 2D game maps. We use geometric principles to first establish a set of
sites that collectively ensure complete coverage, and then consider different heuristics for
connecting these points, building routes that guarantee a character will eventually, determin-
istically observe the entire game map. Beyond reaching full coverage, important considera-
tions in algorithmic approaches to exploration are in doing so quickly, and inmaximizing the
amount of map space revealed at each point—the latter is especially useful in mimicking
a human interest in having continual, high novelty throughout exploration. Experimental

evaluation of our approach under a wide variety of configurations allows us to observe the
impact of different heuristic choices on speed and the pace of map-reveal, and verify that
our approach is also robust to different game maps, choices of starting and ending positions,
means of navigation, and granularity in performing observations.

Specific contributions of our work include the following.

• We present and implement an approach to exhaustive exploration of 2D maps, suitable
for complex, known game geometries. Our design is heuristic and modular in several
ways, but is able to guarantee complete, deterministic coverage.

• We perform detailed experimental work for different parametrizations of our design,
using 6 different maps taken frommodern games to establish the degree of variance in-
duced by different factors. In this we show that simple greedy approaches are effective,
but that a more complex, but still feasible heuristic balancing path cost and coverage
benefit has generally better performance.

In the next section we discuss related work on exploration, focusing on theoretical results
from computational geometry, as well as more practical approaches in robotics and games.
We then present our methodology and implementation framework, including the theoretical
basis for our result and different, modular heuristics that can drive it. Experimental results
show performance of our designs under different permutations of assumptions.

RELATED WORK
Our work relates in a theoretical sense to problems guaranteeing (visual) coverage of a
polygon. Perhaps the most well known problem in this area, and which we also make use
of in our design, is the Art Gallery Problem (AGP) which asks for the minimum number
of cameras or stationary guards required to cover the interior of an n-walled art gallery,
modelled as an n-sided 2D polygon (O’Rourke 1987). For dynamic coverage, the main
variation of this is theWatchmenRoute Problem (WRP), where the task is to find the smallest
route in a polygon, such that every point inside the polygon is visible from some point on the
route. This particular problem statement is very similar to ours, except that we are interested
in reducing redundancy in the observations, as well as trying to balance performance and
efficiency in a practical design.

It has been shown that WRP starting from a fixed point is NP-hard for polygons with
holes (Chin and Ntafos 1986). The best known solution for this problem in the case of
simple (no holes) polygons is an O(n3 logn) algorithm (Dror et al. 2003). The WRP with-
out any restrictions currently has anO(n5) solution (Tan 2001), and there exists a linear time
2-approximation algorithm as well (Tan 2007). There have also been variations of both AGP
and WRP using limited visibility (Kazazakis and Argyros 2002; Wang et al. 2010). These
theoretical approaches are interesting but quite complex, and as mentioned the problem is
NP-hard in the context of polygons with holes, which are required to model many game
maps.

Some exploration-related work in the games area can be found as part of part of more com-
plex, overall strategies, such as in bot design for Real-time Strategy (RTS) games. Hagel-
bäck and Johansson (2008), for instance, describe a design for automated discovery and

–2–

combat based on potential fields. Attraction and repulsion forces are applied to terrain,
bases, enemies, and unknown locations to guide a bot through terrain, avoiding obstacles
and reaching appropriate locations for engaging enemies. A different approach was taken
by Third Eye Crime, which used dynamically updated discrete probability distributions to
guide enemy search in an interactive stealth game (Isla 2013). The distribution is then ex-
posed to the player, who can use that information to avoid discovery. These works combine
gameplay with exploration in interesting ways, but either do not guarantee exhaustive cov-
erage or do so inefficiently, as a probabilistic limit.

In games of certain genres (e.g. roguelike, turn-based), player tedium is reduced in the
presence of repetitive level exploration through automated exploration. This automation is
usually player controlled and within a gridworld setting, acting as a macro-command that
(repeatedly) moves the player character to the nearest discrete, unexplored location, stop-
pingwhen enemies or other important elements are encountered. In the case ofCivilization 5
(Various contributors) automated scouting takes into account terrain cost and visibility ben-
efit, and in the case of Dungeon Crawl Stone Soup (DCSS Devteam) there are heuristics
that affect the choice of which unobserved area is chosen, but these are essentially all mi-
nor variations on a trivial, greedy approach. These simple approaches can also sometimes
be quite inefficient, with unsatisfactory results a frequent concern for players, as is often
reported in game forums (Various contributors).

The field of robotics contains perhaps the most mature and significant research on au-
tonomous exploration. Many different approaches have been used, including ones based
on constructing efficient coverage tours (Xu et al. 2014), although these tend to be strongly
constrained by environmental or vehicular factors. Exploration approaches more generally
drift into solutions to simultaneously mapping an unknown environment and figuring out
a robot’s position within that environment, or the Simultaneous Localization and Mapping
(SLAM) problem (Thrun 2002). Certain strategies employ moving the agent in a fixed path
such as concentric circles (Sim and Dudek 2003), while others use some sort of evaluation
function to determine the next best point to move to (Tovey and Koenig 2003), and experi-
mental analysis of different strategies that can be followed have been performed (Amigoni
2008). Unlike exploration in a video game context, these algorithms have to account for
hardware issues, and often focus on problems created by faulty sensor readings or a sen-
sor’s information extraction capabilities.

METHODOLOGY
Our implementation framework consists of multiple phases, largely incorporated into the
Unity3D game engine. For greater efficiency in analysis and additional flexibility, we also
have the ability to export specific phases to external programs; a schematic of the complete
workflow is shown in figure 1.

The process we follow can be roughly divided into 3 main phases. First we prepare maps
to experiment on. Then we find a set of points which collectively provide complete vi-
sual coverage of the map, and establish methods of accurately measuring coverage. Lastly,
we connect these cameras via navigation graphs or roadmaps, and construct different ex-
ploratory tours that visit the cameras, such that each point inside the map is guaranteed to be
seen from some point on any such tour. The subsections below expand on these core steps.

–3–

Figure 1: Platform architecture

Map Modelling and Collection
Since exploration is primarily affected by visibility and mobility, and these in turn are af-
fected by structural properties, our essential requirement for modelling maps is the geomet-
ric shape of the game world. We use a 2-dimensional (2D) polygons with holes, where the
obstacles and map border are represented by the holes and the boundaries of the polygon
(exterior), respectively. The NPC is a point inside the polygon and can move about in every
direction. This model is quite abstract, and can be applied to a large number of scenarios.

As games are proprietary products, most developers and publishers do not make their lev-
els readily available for use outside the game. Map sets suitable for academic research can
be found online (Sturtevant 2012), but are mainly aimed at evaluating pathfinding, and ex-
pressed as heavily discretized gridworlds. For more modern maps with scalable, geometric
representations we thus perform a manual extraction based on tracing over map screenshots,
easily found in various online sources. For 3D images we always trace along the top of struc-
tures as such a view usually obscures some floor-level details. Transformations are applied
to isometric traces to correct any perspective view. The tracing is done in Inkscape, which
saves the map in .svg format, which we can then parse in order to extract node and edge
coordinates required to build a polygonal representation. This manual process does not of
course necessarily result in perfect mimicry of the actual game map, but minor distortions
do not affect our overall process or results, and the approximations inherent in this process
could be improved through the use of direct, in-game representations, if available.

–4–

Coverage
As we are treating the NPC as a point, we can use point visibility to determine what it
sees from a specific location. Given a polygon P (with holes) and a point p conceptually
simple algorithms exist to compute the visibility polygon, or subset of P that can be seen
from p (Ghosh 2007). If we can obtain a set of visibility polygons whose aggregate area
covers all of the area within P, we can solve the problem of seeing the entire map. This
more abstract problem was solved in the 1970’s when posed as the Art Gallery Problem,
which involves placing cameras in a 2D polygon, so as to guarantee complete observation
of the space. A true minimum solution is expensive to compute, but solutions exist for
simple polygons (O’Rourke 1987), and ones with holes (Hoffmann et al. 1991) which can
guarantee sufficiency in camera placement.

Our process actually follows a slightly modified version of Fisk’s (1978) solution to the
simple polygon version of the Art Gallery Problem, as a computationally straightforward
approach. This requires we first triangulate the polygon, then compute a 3-colouring of the
triangulation vertices, designating the set of points with the minimum occurring colour as
the set of cameras. Being convex, triangles can be fully observed from any of their vertices,
a 3-colouring guarantees each triangle has a vertex of every colour, and so this guarantees
every point in the polygon is covered. A slight inefficiency is introduced into this approach
to handle holes while still guaranteeing 3-colourability, basically by connecting every hole
to the exterior and so reducing our polygon with holes back to a simple polygon. Practically,
this is done by forming a spanning tree whose nodes are the exterior and the holes.

Our exploratory tours will visit the cameras incrementally. To understand howwell any such
tour, or method used to generate the tour, works we have to determine the exact amount of
space the NPC sees from its path. For this we use visibility polygons, which have the advan-
tage of letting us compute relative coverage through polygon overlap and difference. The
final NPCs exploration path, however, will be dynamic, in the form of edges, and therefore it
would seem tomakemore sense to consider visibility from an edge instead of a point. We do
not use edge visibility algorithms because they are highly complicated and are computation-
ally expensive (Suri and O’Rourke 1986), and moreover do not let us consider the impact
of frequency or granularity in NPC observations. We thus instead use point visibility from
each endpoint of an edge as an approximation to edge visibility, computed using Asano’s
(1985) planar-sweep algorithm. To calculate aggregate coverage as an NPC moves from
one camera to another we merge individual visibility polygons to form larger polygons.

Roadmaps and Tours
The process for visiting cameras involves navigating between individual camera locations.
We use a roadmap construction for this, both for the improved efficiency and to follow the
practical and common use of roadmaps in actual games. We experiment with two kinds
of roadmaps that provide different pathing properties: triangulation roadmaps, and shortest
path roadmaps. Either can serve as the basis for constructing routes between cameras by first
joining start and end points to the roadmap, and then using a search process (A*, Dijsktra,
etc) on the resulting graph to compute the final path.

Triangulation roadmaps are trivially computed from a triangulation, joining the centroid
of each triangle to the midpoint of each of its edges that is shared with another triangle.

–5–

Figure 2: A triangulation roadmap on the map Crash from Call of Duty 4

Start and end points are then just connected to the centroid of their respective, enclosing
triangles. The result is not optimal in general, with the potential for significant inefficiences
due to variation in triangle size/proportions. It is, however, easy and efficient to compute,
especially (as in our case) if a triangulation is already computed for other purposes, and
tends to reasonably approximate a path that avoids close contact with obstacle edges, as is
common in human-like movement. Figure 2 shows an example of the result.

Shortest-path roadmaps provide for more efficient pathing results. These roadmaps are built
by finding a subset of polygon (and obstacle) vertices that are reflex vertices (interior angle
strictly greater than 180◦), and which can be connected by a bitangent edge, a line segment
that does not strictly intersect the polygon along its length, or if slightly extended past the
connecting points in either direction. Insertion of the start/end points is more complicated as
well, requiring they be connected to all visible roadmap nodes, potentially including each
other. LaValle (2006) gives the full construction. A shortest path roadmap, as the name
suggests, guarantees shortest paths between points, but has the disadvantage of tending to
include segments that overlap with or “hug” polygon edges, and so may not well repre-
sent realistic character movement. Figure 3 shows the result on the same game map as our
triangulation roadmap example.

Preprocessing for Tours
Once the roadmap is computed, we connect each camera point to the roadmap as the possible
start or end point of a path segment. We can begin from a given camera, compute a path to
another camera, go to it via the computed path, and from there repeat the process until all
cameras have been visited. This combination of paths is the NPCs exploratory tour, and by
the use of the Art Gallery theorem, guarantees full coverage.

To judge a given tour we consider a) its total length, and b) the rate at which the map is seen
or uncovered. The latter is required to figure out when the tour stops as it is complete when
the whole map has been seen, regardless of whether all cameras have been visited. The
length of the shortest path between two points in our roadmap is precomputed using Dijk-

–6–

Figure 3: A shortest-path roadmap

stra’s single-source shortest-path algorithm, and we also precompute the visibility polygons
of each node (camera and non-camera) on the roadmap. Figure 4 shows an example of a
tour based on the shortest path roadmap.

Figure 4: An exploratory tour covering the whole map i.e. the final result of our process.
Blue lines indicate the tour, starting at the green node and terminating at the red node. Some
edges in the image are traversed in both directions making it appear as though the path ends
at several points.

Tour Types

The tour is formed by visiting cameras one by one. At each camera there exists the option of
choosing one of several unvisited cameras as the next destination. The way this is decided
strongly affects the overall length of the tour, minimization of which implies a travelling
salesman problem. It also affects the speed/rate of coverage, with different choices result-
ing in more or less redundancy in revealed area. Our approach is thus to evaluate several

–7–

heuristics, focusing on simple, greedy choices that at least intuitively should tend to short
routes and rapid discovery.

Nearest (N) - In nearest tours, we always try to get to the camera that is nearest to the current
point based on Dijkstra distance values between cameras. The aim is to visit all the cameras
in one region first so that the NPC does not have to return to it later. Although this is simple
and avoids visibility calculations, it has the disadvantage that increase in coverage is not
guaranteed, and can be nonexistent while in the same overall convex region.

Farthest (F) - This is the opposite of the N tour. Although this approach is not likely to
be efficient in terms of distance travelled, the idea is that the farthest camera likely covers
a region that shares the least overlap with the current camera, and, therefore, will yield the
largest increase in coverage.

Nearest Non-Visible (NNV) - Instead of considering all cameras like the N tour, we con-
sider only the ones that are not directly visible to our current camera. We are attempting to
get a larger increase in coverage by going to a region that has less overlap with the current
one, and at the same time minimize the increase in tour length by visiting a camera that is
nearby.

Maximum Union (MU) - In this tour type we choose the camera that will provide the
maximum increase in coverage. At all times the area of the map that has been seen up to
this point in the tour is known (by merging the visibility polygons of all visited camera and
non-camera nodes). The increase in coverage an unvisited camera provides is measured by
merging the area it sees with the area of the map seen so far.

MaximumUnion: Distance (MUD) - The maximum union:distance tour accounts for both
coverage and distance. We now take the increase in coverage that a camera would provide
and divide it by the increase in tour distance that would be incurred when travelling to that
particular camera, selecting the camera that gives the maximum ratio. This makes sense
since we want to maximize coverage and minimize distance travelled.

RESULTS
Our goal in experimental analysis is to better understand the way our algorithm works in
real game contexts. For this we thus chose a number of relevant game maps, and primarily
measured total tour distance necessary for complete coverage, using the different heuristics
presented in the previous section. This is of course not the only optimization criterion.
Tours may also differ, and be more or less preferable, in how the map is revealed—ideally,
for human guidance, we would combine a short tour with continuous, large increases in
coverage, and so limit the time and area which is repeatedly re-covered in the course of
exploration; NPC exploration may, alternatively, aim for a high novel coverage gradient
either early or late in the search, giving the player less or more chance of evading detection
respectively. Note that as we are mainly interested in properties of the tour result, and all
the information necessary to perform a tour can be computed at map construction time, we
do not measure computational performance of tour decisions.

Many other factors are also relevant to our design and may have significant influence. Ta-
ble 1 lists 5 different feature categories that could affect a tour in a map, along with the

–8–

Table 1: Features and Metrics

Roadmaps Tour Types Starting Point Granularity Target Metrics
Shortest-path Nearest Arbitrary Regular Camera Distance
Triangulation Farthest Extreme Double All Coverage

Nearest non- Centre Triple
visible
Max Union
Max Union:
Distance

metrics that we use to indicate the quality of a tour. We independently vary the choice of
roadmap, path heuristic (tour type), starting position in the map, granularity of observations,
whether the path heuristic includes only camera positions or all points (target), and compare
the combinations in terms of both distance and coverage properties. Not all combinations
are interesting of course, and space constraints prevent us from showing all possibilities,
so here we focus on independently evaluating the impact of each factor, leaving other, de-
pendent factors set to their default value, which is the first value shown in each column.
Starting positions begin at a camera location, giving us a maximum of n different tours for
n cameras, with aggregate results summarizing over these sets.

Maps

The experiments were carried out on maps from popular commercial games. Six different
maps were taken from online sources (wikis and/or game-maps.com), three from the role
playing game Pillars of Eternity (figures 5a, 5b and 5c), and one each from Witcher 3 (fig-
ure 6), Call of Duty 4 (figure 4), and Arkham Asylaum (figure 7). These maps were selected
for their availability in terms of accurate and traceable screen images, their relative size and
geometric complexity, and for including both building and dungeon interiors. Note that we
analyze only the base 2D representation (we model the stairs between levels in the Pillars
of Eternity: Doemenel Manor as a long corridor). We did not include exterior maps, as
these tended to have ill-defined boundaries and obstacles, making a geometric representa-
tion more arbitrary.

Coverage Measures and Tour Instances

Figure 8 shows two graphs that measure relative coverage (y-axis, percentage of the map’s
full area) versus tour length (x-axis, in Cartesian units), for each of our 5 tour types. All
the tours are shown in full except for the Farthest (F) tour, which is truncated, as it takes
considerably longer to finish than the other tours. The left graph shows progression of the
tours when starting from one camera point, and the right shows tours constructed from a
different random starting point on the same map. These coverage graphs are interesting
in showing how individual tours vary in the speed at which coverage is achieved (slope),
with horizontal segments indicating periods in which nothing new is discovered. In this we
can see that despite good initial coverage the very long tail of F is probably undesirable,
and that N and NNV seem to alternate periods of large discovery with long redundancy.
There is high variance though, and so we now consider other factors on aggregate results,
concentrating on tour length.

–9–

(a) Raedric’s Hold Dungeons (b) Copperlane Catacombs

Stairs

Floor 2

Floor 1

(c) Doemenel Manor

Figure 5: Pillars of Eternity maps

Aggregated Comparison of Tour Types

To properly compare the tour types we have to run each tour type (e.g. N tour) on all starting
points (cameras), then note the length of each tour instance (e.g. each individual N tour),
and contrast the behaviour of the aggregated data to the data from other tour types (e.g.
all N versus all MU). This aggregated behaviour is represented as a violin plot which is
simply a probability distribution of tour lengths. Figure 9 shows the violin plots obtained
from Copperlane Catacombs. The height of each region represents the range of the length
for tours of that type and the width at any point is proportional to the likelihood of that
particular value. The widest region in each plot is the most likely value of the length for
that tour type. Here we can see that despite the high variance in individual behaviours, in a
general sense the MUD tour performs better than other tours for all starting cameras. N is
always better than MU, and both overlap with NNV. NNV seems to have the widest variety
in tour lengths, a fact that maybe helpful if a developer wants different NPCs to perform at
different kinds of efficiency over a wide range. The relative ranks of the the tour types are
the same in 3 other maps (Doemenel Manor, Crash, Arkham Mansion), and MUD performs
the best in all maps. The ranking between MU, N and NNV have some variance in the other
cases, indicating that finer aspects of this ranking are also map dependent.

MUD’s dominance suggests that distance and coverage work better as heuristics when used
in combination rather than individually. In trying to get to the camera with the best coverage
increase, MU likely goes to points that are far away, ignoring nearby cameras that were

–10–

Figure 6: Witcher 3: Palace of Vizima

Figure 7: Arkham Asylum: Arkham Mansion

crucial to achieving complete coverage in the local area. This means it will have to come
back to the same area later, an inefficiency which is a major issue in player disastification
with automated exploration. N is likely to ensure the local area is covered, since it is trying to
move to the nearest points, but will have some redundancy, as in an area densely populated
by cameras it is not necessary to visit all of them.

Target
At each decision point in the tour we choose among unvisited camera nodes in the roadmap.
The roadmap, however, contains many more nodes than just camera points, and one of
these may provide better increase in coverage than a camera point at that given decision
point. Figure 10 shows results from Crash. Here, we compare each tour type in two modes,
a) “All”, which means all roadmap points are possible candidates, and b) “Camera”, our
default strategy, which selects only from camera points.

Results for all the maps, except Palace of Vizima, displayed common patterns. When using
cameras as the target, N and NNV perform better, although sometimes only slightly so. MU

–11–

Distance Travelled

P
e

rc
e

n
ta

g
e

 A
re

a
 C

o
v

e
re

d

0 100 200 300 400 500 600 700

2
0

4
0

6
0

8
0

1
0
0

Progression of different tour types

N

F

NNV

MU

MUD

>2100

Distance Travelled

P
e
rc

e
n

ta
g

e
 A

re
a
 C

o
v

e
re

d

0 100 200 300 400 500 600

2
0

4
0

6
0

8
0

1
0
0

Progression of different tour types

N

F

NNV

MU

MUD

>2300

Figure 8: Relative coverage over distance for different strategies. Left and right graphs are
from two different camera starting points on Copperlane Catacombs.

Figure 9: Comparison of tour lengths in Copperlane Catacombs.

and MUD generally worked better when all nodes were targeted, otherwise they had similar
performance under both settings. In Palace of Vizima, all except NNV are better in the “All”
mode.

In these results we can observe that distance appears to be a better heuristic when cameras
are used as the sole target, whereas coverage is better when all nodes can be tested. MUD
is observably improved when all nodes are considered. Unlike points of good proximity,
points of improved coverage are not spread about symmetrically. Hence, more choices
increases the likelihood of a better decision.

Starting Positions
As shown previously in figure 8 when analysing individual tours, we noticed that starting
positions have a definite effect on the progression and total length of a tour. This can be
seen purely as a (large) source of variance, but it is also possible that, viewed coarsely,
some starting areas are better than others. In particular, starting from near the center of a
map should give relatively equal access to other locations, while starting close to an edge
of the map will bias the cost (and benefit) of some locations over others.

–12–

2
5
0

3
0
0

3
5
0

4
0
0

Camera All

N

2
5
0

3
5
0

4
5
0

Camera All

NNV

2
5
0

3
5
0

4
5
0

Camera All

MU

1
6
0

2
0
0

2
4
0

Camera All

MUD

Target Comparison: Camera Vs All (Call of Duty 4: Crash)

*Scales di er between charts

Figure 10: Tour length given different target choice sets.

We therefore tried to see if tours starting from central and extreme (edge) regions of the
map, computed based on overall map boundary, differed in any way from all other tours
or a random tour. We do not show plots of this, as no predictable pattern could be found.
This implies that either the starting position is not itself an important factor, or that the
occlusion and pathing constraints imparted by the geometry of a map are more important
than the starting point’s relation to the map boundary. As future work it would be interesting
to explore whether this is still true for other interpretations of center and extreme positions,
such as by using a network centralitymeasure on the roadmap (Freeman et al. 1991) designed
to represent a center (or extreme position) with respect to path distance.

Granularity
Currently we are only checking visibility at the endpoints of path edge segments as a way of
approximating everything that the NPC sees as it walks along a line. Other than using full,
and expensive edge visibility algorithms, a scalable way to improve this approximation is
to check visibility at additional points between the endpoints, i.e, checking points at higher
granularity. This increases the coverage generated by each line of movement, changes de-
cisions made based on coverage, and also possibly allows a tour to stop prematurely if full
coverage is achieved earlier. We experiment with granularity by uniformly dividing up the
edges using a fixed interval. The interval is the average edge length of the roadmap. At
double and triple granularity the interval is the average distance divide by 2 and 3, respec-
tively.

Figure 11 shows the results of granularity experiments on Palace of Vizima, with other maps
showing generally similar trends. In almost all cases there is a marked improvement in tour
distance when checking visibility polygons for points at a higher granularity or frequency.
Choice of coarse or fine-grained observation points can thus be a useful scaling factor to
weigh against performance, although the benefit to tour distance is not always in proportion:

–13–

the improvement sometimes happens at triple granularity or stops after double, suggesting
there are performance plateaus or even thresholds beyond which increased granularity might
not offer further significant improvement.

30
0

35
0

40
0

45
0

50
0

Regular Double Triple

N

* Scales different in each chart

 Granularity Comparison

(Witcher 3: Palace of Vizima)

50
0

15
00

25
00

35
00

Regular Double Triple

F

30
0

40
0

50
0

60
0

Regular Double Triple

NNV

20
0

30
0

40
0

50
0

60
0

Regular Double Triple

MU

15
0

20
0

25
0

30
0

35
0

Regular Double Triple

MUD

Figure 11: Tour length given granularity choices.

Roadmaps
A roadmap heavily influences a tour’s geometric nature by defining the set of possiblemove-
ments from a point A to a point B. All the results above were based on tours using shortest-
path roadmaps. We thus repeated the experiments using a triangulation roadmap on three
of the maps (Copperlane Catacombs, Doemenel Manor, Crash). We do not show specific
results, as overall we did not observe many interesting differences in the weighing of our
different factors due to the roadmap choice. Tour types maintained similar ranks, and while
target and granularity did not have as significant an effect on the triangulation roadmap,
improvements and lack thereof were in the same general directions.

CONCLUSIONS & FUTURE WORK
The need for good exploration algorithms is important to many modern games, giving NPCs
more realistic behaviours, and reducing player frustration with ad hoc heuristics. We pro-
posed a simple method with a strong guarantee of being exhaustive, and evaluated the im-
pact of a variety of practical factors on its behaviour using multiple, realistic game maps.
Heuristics that balance coverage and distance generally do best, with improvements also
possible through increased granularity of observation, at least in terms of overall length of
an exploratory tour.

An ideal next step would be a qualitative assessment of our method by implementing it in
existing games and using human testing to gauge impact on player experience. This would
provide useful data on the relative importance of redundancy and novelty in exploration,
giving more weight to a quantitative evaluation of a tour from that perspective, in addi-
tion to overall tour length. There are also, of course, many additional complexities in how

–14–

games present or model observation. Limited field-of-view, lighting issues, and use of full,
truly 3D spaces would be interesting to explore, and although these complexities can eas-
ily change the underlying theoretical problem, it may be possible to use a similar approach
based on constructing a tour of sites that collectively provide a coverage guarantee. Starting
from a known solution of any form, tour optimization—introducing short-cuts that bypass
intermediate or final goals if coverage can still be guaranteed, or the inverse—degrading
a tour through side-excursions, might be a feasible and scalable means of modifying tours
to achieve different gameplay effects, while still ensuring an exhaustive result. Finally, it
would be interesting to extend our design to contexts that do not assume prior knowledge of
the map, both to mimic more realistic exploration behaviours, and to address multiplayer en-
vironments that require global map knowledge be restricted in order to reduce opportunities
for cheating.

ACKNOWLEDGEMENTS

This work supported by the Natural Sciences and Engineering Research Council of Canada,
Application ID #249902.

BIBLIOGRAPHY

Amigoni, Francesco. 2008. “Experimental evaluation of some exploration strategies for mo-
bile robots.” In IEEE International Conference on Robotics and Automation, 2818–
2823. IEEE.

Asano, Takao. 1985. “Efficient algorithms for finding the visibility polygons for a polygonal
region with holes.” Transactions of IECE of Japan E-68:557–559.

Chin, Wei-Pang, and Simeon Ntafos. 1986. “Optimum watchman routes.” In Proceedings
of the second annual symposium on Computational geometry, 24–33. ACM.

DCSS Devteam. Dungeon Crawl Stone Soup. https://crawl.develz.org/.

Dror,Moshe, Alon Efrat, Anna Lubiw, and Joseph S.B.Mitchell. 2003. “Touring a sequence
of polygons.” In Proceedings of the thirty-fifth annual ACM symposium on Theory of
computing, 473–482. ACM.

Fisk, Steve. 1978. “A short proof of Chvátal’s watchman theorem.” Journal of Combinato-
rial Theory, Series B 24 (3): 374.

Freeman, L. C., S. P. Borgatti, and D. R. White. 1991. “Centrality in valued graphs: A
measure of betweenness based on network flow.” Social Networks 13 (2): 141–154.

Ghosh, Subir. 2007. Visibility Algorithms in the Plane. Cambridge University Press.

Hagelbäck, Johan, and Stefan J. Johansson. 2008. “Dealing with fog of war in a real time
strategy game environment.” In IEEE Symposium On Computational Intelligence and
Games, 55–62. IEEE.

Hoffmann, F., M. Kaufmann, and K. Kriegel. 1991. “The art gallery theorem for polygons
with holes.” In Symposium on Foundations of Computer Science, 39–48. October.

–15–

Isla, Damián. 2013. “Third Eye Crime: Building a Stealth Game Around OccupancyMaps.”
In Proceedings of the Ninth AAAI Conference on Artificial Intelligence and Interactive
Digital Entertainment, 206–206. AAAI.

Kazazakis, Giorgos D, and Antonis Argyros. 2002. “Fast positioning of limited-visibility
guards for the inspection of 2D workspaces.” In IEEE/RSJ International Conference
on Intelligent Robots and Systems, 3:2843–2848. IEEE.

LaValle, Steven M. 2006. Planning algorithms. Cambridge University Press.

O’Rourke, Joseph. 1987. Art gallery theorems and algorithms. Vol. 57. Oxford University
Press.

Sim, Robert, and Gregory Dudek. 2003. “Effective exploration strategies for the construc-
tion of visual maps.” In IEEE/RSJ International Conference on Intelligent Robots and
Systems, 2003, 4:3224–3231. IEEE.

Sturtevant, Nathan R. 2012. “Benchmarks for Grid-Based Pathfinding.” IEEE Transactions
on Computational Intelligence and AI in Games 4 (2): 144–148.

Suri, Subhash, and JosephO’Rourke. 1986. “Worst-case optimal algorithms for constructing
visibility polygons with holes.” In Proceedings of the second annual symposium on
Computational geometry, 14–23. ACM.

Tan, Xuehou. 2001. “Fast computation of shortest watchman routes in simple polygons.”
Information Processing Letters 77 (1): 27–33.

. 2007. “A linear-time 2-approximation algorithm for the watchman route problem
for simple polygons.” Theoretical Computer Science 384 (1): 92–103.

Thrun, Sebastian. 2002. “Robotic mapping: A survey.” Chap. 1 in Exploring artificial in-
telligence in the new millennium, edited by Gerhard Lakemeyer and Bernhard Nebel,
1–35. San Francisco, CA: Morgan Kaufmann.

Tovey, Craig, and SvenKoenig. 2003. “Improved analysis of greedymapping.” In IEEE/RSJ
International Conference on Intelligent Robots and Systems, 4:3251–3257. IEEE.

Various contributors. Automated exploration versus manual exploration. https : / / www .
reddit .com/r /civ /comments /18wtqz/what_is_better_auto_explore_or_doing_it_
yourself/.

. Civilization Modding Wiki. http://modiki.civfanatics.com/.

Wang, Pengpeng, Ramesh Krishnamurti, and Kamal Gupta. 2010. “Generalized watchman
route problem with discrete view cost.” International Journal of Computational Geom-
etry & Applications 20 (02): 119–146.

Xu, Anqi, Chatavut Viriyasuthee, and Ioannis Rekleitis. 2014. “Efficient complete coverage
of a known arbitrary environment with applications to aerial operations.” Autonomous
Robots 36 (4): 365–381.

–16–

