
Stuck in the Middle: Generating Levels without (or with) Softlocks
Seth Cooper

Northeastern University
Boston, Massachusetts, USA
se.cooper@northeastern.edu

Mahsa Bazzaz
Northeastern University

Boston, Massachusetts, USA
bazzaz.ma@northeastern.edu

Abstract
When generating game levels, it is desirable for them to be com-
pletable. Depending on the designer’s goals, it may also be desir-
able to generate levels without softlocks. A softlock is a situation
where the player has not won or lost, but cannot make progress
toward the goal, and is thus stuck (unless they reset, or possibly
lose the level). In this work we present a constraint-based approach
to generating 2D tile-based levels that are completable and do not
have areas where the player can get stuck. The approach uses a
constraint-based reachability categorization of locations during
level generation. This categorization can be used to prevent soft-
locks by ensuring that all locations reachable going forward from
the start of the level are also reachable going backward from the
goal, unless they are sinks (areas where the player will inevitably
lose the level, e.g. falling off the bottom). Using this approach, it is
also possible to intentionally generate levels with softlocks and to
repair levels to remove softlocks.

Keywords
video games, procedural content generation, constraints, softlocks
ACM Reference Format:
Seth Cooper andMahsa Bazzaz. 2025. Stuck in theMiddle: Generating Levels
without (or with) Softlocks. In International Conference on the Foundations
of Digital Games (FDG ’25), April 15–18, 2025, Graz, Austria. ACM, New York,
NY, USA, 9 pages. https://doi.org/10.1145/3723498.3723844

1 Introduction
A popular application of procedural content generation [34] is the
automated generation of video game levels. When generating levels
automatically, it is generally desirable that they be completable —
that is, it should be technically possible for a player to complete the
level. In a game where the player navigates through the level, for
example, this would mean that there is some path from the start to
the goal. There are many approaches to ensuring completability,
such as having an agent test [43] or repair [46] a level after it is
generated, or constraining a level to be completable [7].

Although checking (or constraining) that a solution exists will
confirm that a level is completable, it may still be possible for the
player to get stuck in some way if they stray from the solution
path. This situation is often referred to as a softlock: the player has
not won or lost, but it is no longer possible to complete the level.

This work is licensed under a Creative Commons Attribution International
4.0 License.

FDG ’25, Graz, Austria
© 2025 Copyright held by the owner/author(s).
ACM ISBN /25/04
https://doi.org/10.1145/3723498.3723844

That is, even if the level can be completed when starting from the
beginning, it may not be possible to complete from all the places
it is possible to get to. Game players have long been interested in
softlocks, and if the games they are playing have them. For example,
the “Cruelty Scale” gives games a rating from “Merciful” to “Cruel”
based on if it is possible to get stuck, and how obvious it is that this
will happen (or has already happened) [32].

In this work, we developed a constraint-based approach to gen-
erating 2D tile-based levels where the player cannot get softlocked
while navigating. It was developed using the Sturgeon constraint-
based level generation system [7]. At a high level, we integrate
constraints that categorize locations in the level as forward reach-
able (reachable by going forward from the start — i.e. all those
locations that the player can get to), backward reachable (reachable
by going backward from the goal — i.e. all those locations from
which it is possible to complete the level), and sink (locations at
which the player will inevitably lose the level by reaching a haz-
ard). The constraints are based on a Sturgeon’s reachability graph
through the level that specifies how the player can move through
the level for a given game.

With this location categorization, additional specialized con-
straints can be added to produce levels with desired properties. For
example, to generate a level where the player cannot get stuck in
a softlock, we constrain that all forward reachable locations that
are not sinks are backward reachable — that is, if a player can get
somewhere in the level, they can either still get to the goal from
there, or they will inevitably lose the level.

While levels without softlocks may be generally desirable, de-
signers may have other objectives for their levels. For example, in
“masocore” games designed to challenge players with high difficulty
[22], softlocks, or even impossible levels, may be desirable. Thus
we also explored generating levels with softlocks and impossible
levels using our approach.

Since our approach is using reachability, we are only considering
softlocks based on player movement, and not other possible game
mechanics such as, e.g. powerups. Also, situations where the player
cannot move at all, but has not yet lost, we consider to be softlocks,
although sometimes this may be distinguished as a separate kind
of lock (e.g. deadlock).

We applied the approach to three different games with different
types of movement: driller, a game where the player digs down
through dirt; slide, a game where the player slides on ice; and
mario, a platformer. We compared to the prior-used path-based
completability. We found the new reachability approach is flexible
enough for a variety or applications, although we found it to take
up to 5 times longer on average to generate levels without softlocks,
and even slower for specific applications. We also found that in
most cases, it appears to increase the range of levels generated.

https://orcid.org/0000-0003-4504-0877
https://orcid.org/0009-0004-0022-9611
https://doi.org/10.1145/3723498.3723844
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3723498.3723844


FDG ’25, April 15–18, 2025, Graz, Austria Seth Cooper and Mahsa Bazzaz

nbr-2

ring

✕

✕ ✕
input

output

✕

driller mario

walk

fall jump

source

open
(dest.)

open

closed

. . .

slide

. . .
Pattern templates Reachability templates

Figure 1: Pattern and reachability templates used in this work. Pattern templates are used to learn tile patterns from example
levels. Each input tile constraints the associated output tiles to match those seen in the example level. Reachability templates
determine edges in the reachability graph of the level. An edge is considered traversable if the desired configuration of open
and closed tiles is met. Not all parts of reachability templates are shown.

The contributions of the this work include: a constraint-based
formulation of categorizing types of reachability in a 2D tile-based
levels; a demonstration of using these categorizations for various
effects, including preventing softlocks; and an application of these
to different games.

2 Related Work
2.1 Procedural Content Generation
There has a been a wide breadth of research in procedural con-
tent generation [34]. Most closely related to our current work
are constraint-based approaches to generating levels. Since our
approach can learn tile patterns from example levels, it is also
related to procedural content generation via machine learning tech-
niques [39]. Research in softlocks and games is discussed more in
the subsequent subsection.

When generating levels using constraint solving, Answer Set
Programming has proven popular [23, 30, 35]. Additionally, search-
[13], sampling- [37], and SAT-based [7] approaches are used. Some
work has looked at using constraints to prevent undesirable solu-
tions in generated levels [36]. Recently, the popularity of the Wave-
FunctionCollapse algorithm [17] has motivated techniques that
learn tile neighborhood constraints from example levels [7, 23, 24].

Completabilty of levels has also received much attention in level
generation research. Rather than ensuring it is not possible to get
stuck entirely, this work usually considers just ensuring a single
path through the level exists. A common approach is using generate-
and-test with an agent, potentially incorporating completability by
the agent into a search’s objective function [37, 43]. Some constraint-
based approaches have been taken [7, 30] as well as using a generate-
and-repair approach [10, 46].

2.2 Detecting Locks
In the domain of testing and analyzing software systems (often
concurrent software), there has been much work on the use of both
forward and backward reachability [19]. This includes checking for
situations where tasks can become permanently blocked [42]. In
these approaches, it is often desired to determine if a system will
reach some undesirable (or unsafe) state. Generally, the approach
is to check if any undesirable states are forward reachable from

starting states, or, if starting states are backward reachable from
any undesirable states [29, 38]. Some work in this are has used back-
ward reachability to determine program states with the “liveness”
property [1], where liveness is generally considered that ‘something
good’ eventually happens [3]. In addition, some work has looked
at comparing or combining forward and backward reachability
[29, 31, 38, 44]. Since in our work we are using a constraint solver
to check properties of a finite number of steps of a system, it may
be considered related to bounded model checking [5].

Work in planning also considers generating plans using forward
and/or backward approaches, roughly described as either searching
forward from a starting state or searching backward from a goal
state [27]. Some planning work has looked at combining both forms
of search [16].

Our work might be considered to be using backward analysis
from the goal (and sink analysis) to identify the undesirable states
(i.e. those that are neither backward reachable nor sink), combined
with forward analysis to make sure these states are not reachable
from the start.

As players getting into a situation where they are can still play
but not complete the level (i.e. a softlock) is usually considered
undesirable and a bug in the game [11],there has been some work
specifically in games in detecting softlocks (or relatedly, deadlocks).
Some approaches use models of the games to look for bugs, includ-
ing Petri nets [2, 33], hyperstate space graphs [6], and computation
tree logic [28]. Similarly, there has been recent work in automated
playtesting [14, 18], using agents to check for potentially undesir-
able states in levels, including specifically looking for places where
the player can get stuck [4, 15, 45].

These game-related approaches are usually applied to levels that
have already been created, often by a human designer, whereas our
approach integrates the prevention of softlocks directly into the
level generator. Some recent work has, though, taken softlocks into
consideration when constructively generating levels [26].

3 Methodology
3.1 Sturgeon
This work is based on Sturgeon [7], a system for constraint-based
generation of 2D tile-based levels. Here we describe the system’s



Stuck in the Middle: Generating Levels without (or with) Softlocks FDG ’25, April 15–18, 2025, Graz, Austria

features most relevant to the current work. At a high level, Sturgeon
takes in a variety of design constraints on the level to be generated,
translates them down to a constraint satisfaction problem (generally
using Boolean variables), uses a constraint solver (e.g. SAT solver) to
solve the problem, and then uses the solution to make the generated
level. Using this approach, many constraints can be added on top
of the base level generation constraints.

Sturgeon can learn to generate levels with local arrangements of
tiles similar to an example level using pattern templates. A pattern
template describes the relationship between input and output tiles
that must be maintained: for an input tile at a particular location in
a generated level, the related output tiles must have been seen in
the example level. Given a pattern template and an example level,
relevant arrangements of tiles are extracted and used to constrain
the generated level. The pattern templates used in this work are
shown in Figure 1. The nbr-2 pattern template requires that the
tiles on the left and bottom must have been in the example level;
the ring pattern template requires that all eight neighboring tiles
must have jointly been in the example level.

To represent movement for a game, Sturgeon uses a reachability
template. For the purposes of basic reachability, tiles are considered
open (the player can move through them) or closed (the player can-
not move through them). A reachability template describes how the
player can move through the level, given a relative local arrange-
ment of open and closed tiles. For a specific level to be generated,
the template is used to construct a reachability graph: a directed
graph, where nodes are locations, and edges represent potential
moves the player might make. An edge whose arrangement of open
and closed nodes (i.e. locations) is matched is considered traversable
and could be part of a valid path through the level. The reacha-
bility templates used in this work are shown in Figure 1; they are
described below with the games they relate to.

3.2 Reachability Categorization
The primary addition to Sturgeon in this work is a constraint-based
categorization of the reachability of locations in a level, as it is being
generated. This constraint problem is included in the same overall
constraint problem used to generate the level. The basic location
categories are forward reachable — possible to reach going forward
from the start — and backward reachable — possible to reach going
backward from the goal.

This categorization is done by using constraints to set up a graph-
based “search” using the reachability graph of the level. The search
is formulated as a constraint satisfaction problem such that the
solution to the problem represents the results of the search. To
use a constraint problem in which the number of variables and
constraints cannot be changed while solving, the search is set up
to a fixed depth, by essentially unrolling the search into a fixed
number of layers, with each layer representing one iteration of the
search. So in the first layer of forward reachability search, only the
start location is reachable; in the second layer, locations forward
reachable from the start are reachable and all others are not; in
the third, locations forward reachable from those reachable in the
second layer are reachable but others are not, and so on. Backward
reachability search is similar, except edges are followed backward
from the goal.

time range
med. max. med. max.

driller

Prior path reachability 0.17s 0.33s 0.25 0.47
Without softlocks 0.53s 0.82s 0.27 0.42
With softlocks 0.51s 0.61s 0.28 0.41
With softlocks, disc. sinks 0.55s 0.81s 0.26 0.39
Impossible 0.50s 0.68s 0.31 0.46
Application: counts 0.67s 2.24s 0.22 0.32
slide

Prior path reachability 0.18s 0.27s 0.25 0.39
Without softlocks 1.38s 2.05s 0.30 0.44
With softlocks 1.44s 2.48s 0.31 0.44
With softlocks, disc. sinks 2.02s 5.63s 0.29 0.43
Impossible 1.33s 1.57s 0.32 0.48
Application: tricky 23.49s 56.54s 0.31 0.44
mario

Prior path reachability 1.59s 3.30s 0.19 0.28
Without softlocks 7.36s 9.07s 0.20 0.29
With softlocks 14.10s 29.07s 0.21 0.31
With softlocks, disc. sinks 23.86s 32.00s 0.25 0.34
Impossible 7.64s 9.09s 0.21 0.32
Application: repair 6.92s 8.31s 0.00 0.01

Table 1: Level generation times and ranges.

Since the number of layers is fixed in advance, it is necessary to
make sure there are enough layers to correctly categorize all loca-
tions. For example, if there were not enough layers in the forward
search, there may be forward reachable locations in the level that
do not get categorized as such. Thus, the categorization constraints
include a saturation check to make sure there are enough layers.
This is done by ensuring that the last two layers are the same —
there are no additional locations to add to the categorization.

We also categorize locations in the level as sinks. Sinks are based
on hazards: locations in the level where the player loses and would
need to restart. Sinks are either hazards or locations where the
player will inevitably make progress toward a hazard and thus lose
the level. Thus, the level is effectively lost once the player enters
a sink, although it may take a number of moves to reach a hazard.
The constraint-based search for sink locations uses the layered
approach, though it is carried out differently from the forward and
backward reachability search (as described below). In this work,
for simplicity, we only consider possible hazard locations along the
sides of the level, e.g. the bottom, or all four sides. (As a note, in the
process of developing this work, we noticed that it was needed to
explicitly account for sinks when generating levels without soft-
locks; otherwise, sink locations would not be generated: since the
player could not reach the goal from them, sinks themselves would
be considered softlocks.)

A visualization of the layers used to categorize locations during
the generation of a level is shown in Figure 2.

Here we describe the reachability categorization constraint prob-
lem setup. To set up the categorization constraints, additional vari-
ables are allocated. These are primarily:



FDG ’25, April 15–18, 2025, Graz, Austria Seth Cooper and Mahsa Bazzaz

Layer: 1 2 3 4 5 6

7 8 9 10 11 12

Level

Figure 2: Location categorization from generating a level in the driller game, where the player can move side to side and
down, but not up. This shows a visualization of the location categorization layers, used internally during constraint solving, to
generate a level. These categorizations come from variable values for each layer in the solution to the constraint satisfaction
problem. Note that the last two layers are the same due to the saturation constraint. The final generated level shows a path and
softlock area. Yellow outlines show forward reachable areas, blue outlines show backward reachable areas, pink backhatching
shows sink areas. Red arrows show a path through the level.

• Each node gets a single variable that represents if it is open.
• Each edge gets a single variable that represents if it is travers-
able.

• For each layer, each node gets a variable that represents if it is
forward reachable, a variable that represents if it is backward
reachable and variable that represents if it is a sink.

Other “auxiliary” variables may be used when setting up specific
constraints.

The basic node open and edge traversable variables are con-
strained as:

• A node is open iff the tile at its corresponding location is open.
• An edge is traversable iff the nodes that it needs to be open
are open and the nodes that it needs to be closed are not open.

Forward reachability categorization is constrained as:
• In the first layer, a node is forward reachable iff it is the start
node.

• In subsequent layers, a node is forward reachable iff: it is itself
forward reachable in the previous layer, or it has an incoming
traversable edge from a node that is forward reachable in the
previous layer.

• In the final layer, the goal node must be forward reachable.
• In the final layer, a node is forward reachable iff it is forward
reachable in the previous layer. (This is the saturation con-
straint.)

Backward reachability (which is essentially forward reachability in
reverse) is constrained as:

• In the first layer, a node is backward reachable iff it is the goal
node.

• In subsequent layers, a node is backward reachable iff: it is
itself backward reachable in the previous layer; or it has an
outgoing traversable edge to a node that is backward reachable
in the previous layer.

• In the final layer, the start node must be backward reachable.

• In the final layer, a node is backward reachable iff it is backward
reachable in the previous layer (saturation constraint).

Sinks are constrained as:

• In the first layer, a node is a sink iff it is a hazard and open.
• In subsequent layers, a node is a sink iff: it is a hazard and
open; or, it is a sink in the previous layer; or, if it has any
traversable outgoing edge, and all traversable outgoing edges
lead to sinks in the previous layer, and it is open.

• In the final layer, a node being a sink implies that it is not the
start and it is not the goal.

• In the final layer, a node is a sink iff it is a sink in the previous
layer (saturation constraint).

Note that sink categorization only needs to be included if there are
possibly any hazards in the level.

With these categorization variables, it is possible to add other
specialized constraints relating them to ensure certain level proper-
ties.

4 Generating Levels
Here we demonstrate how the constraints described above, catego-
rizing forward and backward reachability and sinks, can be used
to produce a variety of effects in levels. For each level generation
setup described, 50 levels were generated. A summary of times
for generating levels are given in Table 1. Table 1 also shows a
summary measure of the range of levels generated, where range is
based on all pairwise, per-tile differences between levels (e.g. two
identical levels would have a difference of 0, and two levels with
differing tiles at every location would have a difference of 1).

In this work we used PySAT’s [20] RC2 solver [21]. The level
images with overlays were created using level2image [8]. Generated
levels can be found on OSF at https://osf.io/yr5zb/.

All levels (other than those using path reachability, described
below) also apply these constraints to make sure there is at least

https://osf.io/yr5zb/


Stuck in the Middle: Generating Levels without (or with) Softlocks FDG ’25, April 15–18, 2025, Graz, Austria

Figure 3: Sample generated levels without softlocks. Yellow outlines show forward reachable areas, blue outlines show backward
reachable areas, pink backhatching shows sink areas. Red arrows show a path through the level.

Figure 4: Sample generated levels with softlocks. Yellow outlines show forward reachable areas, blue outlines show backward
reachable areas, and pink backhatching shows sink areas, and purple hatching shows softlock areas. Red arrows show a path
through the level.

one sink in the level, and that sinks are forward reachable from the
start:

• A node being a sink implies that it is forward reachable.
• There is at least one sink.

4.1 Games Used
Here we briefly describe the games used in this work and some
parameters of the generated levels. The pattern and reachability
templates used are shown in Figure 1.

driller is a custom game in which the player drills through the
ground. They can move from side to side and down, but not up, with
the driller reachability template. Tile patterns are learned from a
custom example level using the nbr-2 pattern template; tile images
from Kenney [25] were used. Generated levels are 10 × 10 with
the start and goal within 3 tiles of the top-left and bottom-right,
respectively. For completable driller levels, we apply a constraint
so that disconnected sections of the level are not generated:

• A node being open implies that it is forward reachable.

20 reachability steps were used, and the bottom side can be hazards.
slide is a custom game where the player slides on ice. They

can move up, down, left, and right, but keep moving in the same
direction until they run into a solid block. This uses the slide reach-
ability template. Tile patterns are learned from a custom example
level using the nbr-2 pattern template; tile images from Kenney
[25] were used. Generated levels are 10 × 10 with the start and
goal within 3 tiles of the top-left and bottom-right, respectively. 20
reachability steps were used, and all sides can be hazards.

mario is based on the game Super Mario Bros. It is a platforming
game where the player can run, jump, and fall. The mario reacha-
bility template, a discrete approximation of platforming movement
similar to that of [40], was used. The example level was based on
level 1-1 from the VGLC [41]. Levels for the mario game were gen-
erated in a two-pass approach: first, the underlying “functional”
level is generated using patterns learned by the ring template;
then, this functional level is used to generate the image for the level
using patterns learned by the nbr-2 template. Generated levels are
10 × 29 with the start and goal within 4 tiles of the left and right,
respectively. 25 reachability steps were used, and the bottom side
can be hazards.

4.2 Levels using Prior Path Reachability
As a point of comparison for timing, we generated levels using
Sturgeon’s previous approach of ensuring that there is a single path
through the level using the game’s reachability template. More
details can be found in [7]. This approach does not ensure that it
is not possible to get stuck somewhere. It also does not determine
forward or backward reachability or sinks, so it is not possible to
use the specialized constraints described above. However, to have
some structural similarity with other generated levels, we required
at least one of the potential hazard locations for the game (e.g. along
the sides) to be open.

4.3 Levels without Softlocks
To generate levels where it is not possible for the player to get stuck,
we also apply this specialized constraint to levels:



FDG ’25, April 15–18, 2025, Graz, Austria Seth Cooper and Mahsa Bazzaz

Figure 5: Sample generated levels with softlocks that are disconnected from sinks. Yellow outlines show forward reachable
areas, blue outlines show backward reachable areas, and pink backhatching shows sink areas, and purple hatching shows
softlock areas. Red arrows show a path through the level.

Figure 6: Sample generated levels that are impossible to complete. Yellow outlines show forward reachable areas, blue outlines
show backward reachable areas, and pink backhatching shows sink areas, and purple hatching shows softlock areas.

• A node being forward reachable and not a sink implies that it
is backward reachable.

This ensures that every location that the player can reach from the
start, they can also reach the goal from; or, they will eventually
reach a hazard. Thus they won’t get stuck. Some sample levels are
shown in Figure 3.

4.4 Levels with Softlocks
To generate levels where it is possible for a player to get softlocked,
we apply a specialized constraint:

• There is at least one node that is forward reachable, not a sink,
and not backward reachable.

Some sample levels are shown in Figure 4.

4.5 Levels with Softlocks, Disconnected Sinks
One property of levels generated with the above softlock-creating
constraint, is that although they have an area where the player
can get stuck (in that the player cannot reach the goal), it may
be possible for the player to reach a sink (and then inevitably a
hazard), and thus lose the level. In such a case, the player may not
be considered truly stuck, as they can make progress toward some
ending of the level, even if it is losing.

Thus, we also explored requiring that softlocks be disconnected
from any sink areas, in that they cannot be neighboring. We apply
an additional specialized constraint:

• It should be possible to get softlocked (as above).

• A node being softlocked (as defined above) implies that all
outgoing edges are either not traversable or do not lead to a
sink.

Some sample levels are shown in Figure 5.

4.6 Impossible Levels
As noted in previous work, it may be interesting to generate levels
that are impossible to complete, for example, to better understand a
generator, or what level features are used to block the player from
making progress [9, 12]. Levels that are impossible to beat might
also be considered ones in which the player starts out stuck.

To generate impossible levels, we flip the final layer reachability
constraints above for both forward and backward reachability. The
forward reachability constraint is replaced with:

• In the final layer, the goal node must not be forward reachable.
and the backward reachability constraint is replaced with:

• In the final layer, the start node must not be backward reach-
able.

Note that for any impossible levels, driller does not use the above-
mentioned constraint that all open locations are forward reachable,
since there will necessarily be some open areas that are not forward
reachable. Some sample levels are shown in Figure 6.

4.7 Generation Times and Ranges
Here we summarize some general comparisons to using prior path
reachability as a baseline, before proceeding to game-specific appli-
cations.



Stuck in the Middle: Generating Levels without (or with) Softlocks FDG ’25, April 15–18, 2025, Graz, Austria

Figure 7: Applications in driller, where an impossible level
has a balanced amount of its tiles forward and backward
reachable; and slide, where there are a relatively large num-
ber of sinks in the level interior.

Level to be repaired

Repaired level

Figure 8: Repair application in mario. The level to be repaired
is shown on the top. Note that is is possible to get stuck in
between the pipes. The repaired level has added a block in
between the pipes, making it possible to jump out.

Compared to prior path reachability, generating levels with the
reachability categorization constraints is notably slower, though the
impact depends on the game. From Table 1, generating levels with-
out softlocks takes roughly 3–5 times longer on average, depending
on the game. Generating levels with softlocks takes roughly 3–8
times as long, and with the additional constraint that softlocks are
disconnected from sinks roughly 3–15 times as long. Generating
impossible levels takes roughly 3–5 times as long, similar to levels
without softlocks.

Looking at range, with path reachability as a baseline, the average
range of levels generated appears to increase slightly, although the
maximum range for driller decreases.

4.8 Levels with Specific Applications
To highlight the constraint-based approach’s flexibility and control-
lability, we further explored specific applications in each game.

In driller, we looked at controlling the number of forward and
backward reachable locations in an impossible level. In previous

work [9], it was possible to generate an impossible level. However,
how much of the level was reachable before the goal was blocked
was not controllable and fairly variable. With the current system, it
is possible to control the counts of reachability of tiles.We generated
levels using specialized constraints:

• The level must be impossible (as above).
• Over a quarter of the tiles must be forward reachable.
• Over a quarter of the tiles must be backward reachable.

These levels take about 4 times as long to generate, on average, as
using path reachability. An example is shown in Figure 7.

In slide, we looked at making “tricky” levels, where there are
a large number of sinks that will lead to hazards. These could
be interesting and challenging levels to play, as there are a larger
number of locations which will eventually lead to hazards, although
this may not be obvious.

• It must not be possible to get stuck in the level (as above).
• At least 8 of the tiles not along the side of the level must be
sinks.

These levels take quite a bit longer to generate, roughly 130 times
as long as using path reachability. An example is shown in Figure 7.

In mario, we look at using this approach to repair a level. The
system takes as input a level where is is possible to get stuck, and
makes minimal changes so that it is no longer possible to get stuck.

• It must not be possible to get stuck in the level (as above).
• [Soft constraint] Each tile in the generated level should have
the same “functionality” as the level to be repaired (the ap-
pearance of background tiles is not considered).

We used a level where the player can get stuck between two pipes as
the input level. Repairing this level turns out to be a bit faster than
generating a level from scratch with no softlocks. However, this
may be due to the level used requiring only one tile to be changed,
and might take longer for levels requiring more changes. The range
of levels generated is also very low, as the levels will mostly be the
same as the input level. An example is shown in Figure 8.

We also note that by omitting the constraint that it is not possible
to get stuck, and making the tile matching constraint hard, it is
possible to analyze the reachability in an existing level to e.g. find
softlocks (although, in this case it was necessary to use 30 layers).

5 Conclusion
In this work we presented a constraint-based approach to gener-
ating 2D tile-based levels without softlocks. The approach uses
constraints to categorize locations as forward reachable, backward
reachable, or sinks. Using this categorization, additional constraints
can be added that prevent softlocks. We applied the approach in
three games with different player movement. We also showed how
the location categorization can be used to create other effects in
levels, including generating levels with softlocks, generating im-
possible levels, and repairing levels. We found that this approach is
notably slower than generating levels when only ensuring there is
a path from the start to the goal.

There are several avenues for future work. Here, we only consid-
ered player movement. However, softlocks are often of interest in
games with inventory or powerup systems, such as Super Metroid,
where player movement or accessible areas can change over the



FDG ’25, April 15–18, 2025, Graz, Austria Seth Cooper and Mahsa Bazzaz

course of gameplay. It would also be interesting to explore softlock
prevention in other genres of games that are not based on a single
player’s navigation, or in domains such as interactive fiction. Ad-
ditionally, further characterization of the prevalence of softlocks
in generated levels could help inform when approaches to prevent
them would be most useful. Specific applications, such as level
repair, could be explored more thoroughly.

Acknowledgments
The authors would like to thank Adam Smith and Chris Martens
for helpful discussions related to this work.

References
[1] Parosh Aziz Abdulla, Bengt Jonsson, Ahmed Rezine, and Mayank Saksena. 2006.

Proving liveness by backwards reachability. In CONCUR 2006 – Concurrency
Theory, Christel Baier and Holger Hermanns (Eds.). Springer, Berlin, Heidelberg,
95–109. doi:10.1007/11817949_7

[2] Aghyad Albaghajati and Moataz Ahmed. 2022. A co-evolutionary genetic algo-
rithms approach to detect video game bugs. Journal of Systems and Software 188
(June 2022), 111261. doi:10.1016/j.jss.2022.111261

[3] Bowen Alpern and Fred B. Schneider. 1985. Defining liveness. Inform. Process.
Lett. 21, 4 (Oct. 1985), 181–185. doi:10.1016/0020-0190(85)90056-0

[4] Joakim Bergdahl, Camilo Gordillo, Konrad Tollmar, and Linus Gisslén. 2020.
Augmenting automated game testing with deep reinforcement learning. In 2020
IEEE Conference on Games (CoG). 600–603. doi:10.1109/CoG47356.2020.9231552

[5] Edmund Clarke, Armin Biere, Richard Raimi, and Yunshan Zhu. 2001. Bounded
model checking using satisfiability solving. Formal Methods in System Design 19,
1 (July 2001), 7–34. doi:10.1023/A:1011276507260

[6] Michael Cook and Azalea Raad. 2019. Hyperstate space graphs for automated
game analysis. In 2019 IEEE Conference on Games (CoG). 1–8. doi:10.1109/CIG.
2019.8848026

[7] Seth Cooper. 2022. Sturgeon: tile-based procedural level generation via learned
and designed constraints. Proceedings of the AAAI Conference on Artificial Intelli-
gence and Interactive Digital Entertainment 18, 1 (2022), 26–36.

[8] Seth Cooper. 2024. level2image: a utility for making 2D tile-based level images
with overlays. Proceedings of the AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment 20, 1 (Nov. 2024), 254–255. doi:10.1609/aiide.
v20i1.31886

[9] Seth Cooper and Mahsa Bazzaz. 2024. Literally Unplayable: On Constraint-Based
Generation of Uncompletable Levels. In Proceedings of the 15th Workshop on
Procedural Content Generation.

[10] Seth Cooper and Anurag Sarkar. 2020. Pathfinding Agents for Platformer Level
Repair. In Proceedings of the Experimental AI in Games Workshop.

[11] Riccardo Coppola, Tommaso Fulcini, and Francesco Strada. 2024. KnowYour Bugs:
A Survey of Issues in Automated Game Testing Literature. In 2024 IEEE Gaming,
Entertainment, and Media Conference (GEM). 1–6. doi:10.1109/GEM61861.2024.
10585558

[12] Maria Edwards, Ming Jiang, and Julian Togelius. 2021. Search-based exploration
and diagnosis of TOAD-GAN. In Proceedings of the AAAI Conference on Artificial
Intelligence and Interactive Digital Entertainment, Vol. 17. 140–147.

[13] Jose M. Font, Roberto Izquierdo, Daniel Manrique, and Julian Togelius. 2016.
Constrained Level Generation through Grammar-Based Evolutionary Algorithms.
In Applications of Evolutionary Computation (Lecture Notes in Computer Science),
Giovanni Squillero and Paolo Burelli (Eds.). Springer International Publishing,
Cham, 558–573.

[14] Jonas Gillberg, Joakim Bergdahl, Alessandro Sestini, Andrew Eakins, and Linus
Gisslén. 2023. Technical challenges of deploying reinforcement learning agents
for game testing in AAA games. In 2023 IEEE Conference on Games (CoG). 1–8.
doi:10.1109/CoG57401.2023.10333194

[15] Camilo Gordillo, Joakim Bergdahl, Konrad Tollmar, and Linus Gisslén. 2021.
Improving playtesting coverage via curiosity driven reinforcement learning
agents. In 2021 IEEE Conference on Games (CoG). 1–8. doi:10.1109/CoG52621.
2021.9619048

[16] Michael X. Grey, Caelan R. Garrett, C. Karen Liu, Aaron D. Ames, and Andrea L.
Thomaz. 2016. Humanoid manipulation planning using backward-forward search.
In 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
5467–5473. doi:10.1109/IROS.2016.7759804

[17] Maxim Gumin. 2016. WaveFunctionCollapse. https://github.com/mxgmn/
WaveFunctionCollapse.

[18] Christoffer Holmgård, Michael Cerny Green, Antonios Liapis, and Julian Togelius.
2019. Automated playtesting with procedural personas through MCTS with
evolved heuristics. IEEE Transactions on Games 11, 4 (Dec. 2019), 352–362. doi:10.
1109/TG.2018.2808198

[19] Gwan-Hwan Hwang, Kuo-Chung Tai, and Ting-Lu Huang. 1995. Reachability
testing: an approach to testing concurrent software. International Journal of
Software Engineering and Knowledge Engineering 05, 04 (Dec. 1995), 493–510.
doi:10.1142/S0218194095000241

[20] Alexey Ignatiev, Antonio Morgado, and Joao Marques-Silva. 2018. PySAT: a
Python toolkit for prototyping with SAT oracles. In Theory and Applications of
Satisfiability Testing – SAT 2018. 428–437.

[21] Alexey Ignatiev, Antonio Morgado, and Joao Marques-Silva. 2019. RC2: an effi-
cient MaxSAT solver. Journal on Satisfiability, Boolean Modeling and Computation
11, 1 (Jan. 2019), 53–64. doi:10.3233/SAT190116

[22] Mark R. Johnson. 2019. Playful work and laborious play in Super Mario Maker.
Digital Culture & Society 5, 2 (Dec. 2019), 103–120. doi:10.14361/dcs-2019-0207

[23] Isaac Karth and AdamM Smith. 2017. WaveFunctionCollapse is constraint solving
in the wild. In Proceedings of the 12th International Conference on the Foundations
of Digital Games. 1–10.

[24] Jediah Katz, Bahar Bateni, and Adam M. Smith. 2024. You-only-randomize-once:
shaping statistical properties in constraint-based PCG. In Proceedings of the 19th
International Conference on the Foundations of Digital Games. 1–11.

[25] Kenney. 2010. Home. https://www.kenney.nl/.
[26] Lazaros Lazaridis and George F. Fragulis. 2024. Creating a newer and improved

procedural content generation (PCG) algorithm with minimal human interven-
tion for computer gaming development. Computers 13, 11 (Nov. 2024), 304.
doi:10.3390/computers13110304

[27] A. Ligęza. 1985. Backward versus forward plan generation. IFAC Proceedings
Volumes 18, 16 (Nov. 1985), 337–342. doi:10.1016/S1474-6670(17)59986-3

[28] RossMawhorter andAdam Smith. 2021. Softlock detection for SuperMetroid with
computation tree logic. In The 16th International Conference on the Foundations
of Digital Games (FDG) 2021 (FDG’21). Association for Computing Machinery,
New York, NY, USA, 1–10. doi:10.1145/3472538.3472542

[29] Ian M. Mitchell. 2007. Comparing forward and backward reachability as tools for
safety analysis. In Hybrid Systems: Computation and Control, Alberto Bemporad,
Antonio Bicchi, and Giorgio Buttazzo (Eds.). Springer, Berlin, Heidelberg, 428–443.
doi:10.1007/978-3-540-71493-4_34

[30] Mark J. Nelson and Adam M. Smith. 2016. ASP with applications to mazes and
levels. In Procedural Content Generation in Games, Noor Shaker, Julian Togelius,
and Mark J. Nelson (Eds.). Springer International Publishing, 143–157.

[31] Kazuhiro Ogata and Kokichi Futatsugi. 2010. A combination of forward and back-
ward reachability analysis methods. In Formal Methods and Software Engineering,
Jin Song Dong and Huibiao Zhu (Eds.). Springer, Berlin, Heidelberg, 501–517.

[32] Andrew Plotkin. 1996. The Zarfian Cruelty (or Forgiveness) Scale. https://eblong.
com/zarf/essays/cruelty.html. Accessed: 2025-01-30.

[33] Christian Reuter, Stefan Göbel, and Ralf Steinmetz. 2015. Detecting structural
errors in scene-based Multiplayer Games using automatically generated Petri
Nets. In Proceedings of the 10th International Conference on the Foundations of
Digital Games.

[34] Noor Shaker, Julian Togelius, and Mark J. Nelson. 2016. Procedural Content
Generation in Games. Springer International Publishing.

[35] Adam M. Smith, Erik Andersen, Michael Mateas, and Zoran Popović. 2012. A
Case Study of Expressively Constrainable Level Design Automation Tools for a
Puzzle Game. In Proceedings of the International Conference on the Foundations of
Digital Games. 156–163.

[36] Adam M. Smith, Eric Butler, and Zoran Popovic. 2013. Quantifying over Play:
Constraining Undesirable Solutions in Puzzle Design. In Proceedings of the 8th
International Conference on Foundations of Digital Games. 221–228.

[37] Sam Snodgrass and Santiago Ontañón. 2016. Controllable procedural content
generation via constrained multi-dimensional Markov chain sampling. In Pro-
ceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence.
780–786.

[38] Christian Stangier and Thomas Sidle. 2004. Invariant checking combining forward
and backward traversal. In Formal Methods in Computer-Aided Design, Alan J. Hu
and Andrew K. Martin (Eds.). Springer, Berlin, Heidelberg, 414–429. doi:10.1007/
978-3-540-30494-4_29

[39] Adam Summerville, Sam Snodgrass, Matthew Guzdial, Christoffer Holmgård,
Amy K. Hoover, Aaron Isaksen, Andy Nealen, and Julian Togelius. 2018. Proce-
dural Content Generation via Machine Learning (PCGML). IEEE Transactions on
Games 10, 3 (Sept. 2018), 257–270.

[40] Adam James Summerville, Shweta Philip, and Michael Mateas. 2015. MCMCTS
PCG 4 SMB: Monte Carlo Tree Search to Guide Platformer Level Generation.
AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment;
Eleventh Artificial Intelligence and Interactive Digital Entertainment Conference
(2015).

[41] Adam James Summerville, Sam Snodgrass, Michael Mateas, and Santiago On-
tañón. 2016. The VGLC: The Video Game Level Corpus. arXiv:1606.07487 [cs]
(July 2016). http://arxiv.org/abs/1606.07487

[42] Richard N. Taylor. 1983. A general-purpose algorithm for analyzing concurrent
programs. Commun. ACM 26, 5 (May 1983), 361–376. doi:10.1145/69586.69587

[43] Julian Togelius, Georgios N. Yannakakis, Kenneth O. Stanley, and Cameron
Browne. 2011. Search-based procedural content generation: a taxonomy and

https://doi.org/10.1007/11817949_7
https://doi.org/10.1016/j.jss.2022.111261
https://doi.org/10.1016/0020-0190(85)90056-0
https://doi.org/10.1109/CoG47356.2020.9231552
https://doi.org/10.1023/A:1011276507260
https://doi.org/10.1109/CIG.2019.8848026
https://doi.org/10.1109/CIG.2019.8848026
https://doi.org/10.1609/aiide.v20i1.31886
https://doi.org/10.1609/aiide.v20i1.31886
https://doi.org/10.1109/GEM61861.2024.10585558
https://doi.org/10.1109/GEM61861.2024.10585558
https://doi.org/10.1109/CoG57401.2023.10333194
https://doi.org/10.1109/CoG52621.2021.9619048
https://doi.org/10.1109/CoG52621.2021.9619048
https://doi.org/10.1109/IROS.2016.7759804
https://github.com/mxgmn/WaveFunctionCollapse
https://github.com/mxgmn/WaveFunctionCollapse
https://doi.org/10.1109/TG.2018.2808198
https://doi.org/10.1109/TG.2018.2808198
https://doi.org/10.1142/S0218194095000241
https://doi.org/10.3233/SAT190116
https://doi.org/10.14361/dcs-2019-0207
https://www.kenney.nl/
https://doi.org/10.3390/computers13110304
https://doi.org/10.1016/S1474-6670(17)59986-3
https://doi.org/10.1145/3472538.3472542
https://doi.org/10.1007/978-3-540-71493-4_34
https://eblong.com/zarf/essays/cruelty.html
https://eblong.com/zarf/essays/cruelty.html
https://doi.org/10.1007/978-3-540-30494-4_29
https://doi.org/10.1007/978-3-540-30494-4_29
http://arxiv.org/abs/1606.07487
https://doi.org/10.1145/69586.69587


Stuck in the Middle: Generating Levels without (or with) Softlocks FDG ’25, April 15–18, 2025, Graz, Austria

survey. IEEE Transactions on Computational Intelligence and AI in Games 3, 3
(2011), 172–186.

[44] Yakir Vizel, Orna Grumberg, and Sharon Shoham. 2013. Intertwined forward-
backward reachability analysis using interpolants. In Tools and Algorithms for the
Construction and Analysis of Systems, Nir Piterman and Scott A. Smolka (Eds.).
Springer, Berlin, Heidelberg, 308–323. doi:10.1007/978-3-642-36742-7_22

[45] Benedict Wilkins and Kostas Stathis. 2022. World of Bugs: a platform for auto-
mated bug detection in 3D video games. In 2022 IEEE Conference on Games (CoG).
520–523. doi:10.1109/CoG51982.2022.9893616

[46] Hejia Zhang, Matthew Fontaine, Amy Hoover, Julian Togelius, Bistra Dilkina,
and Stefanos Nikolaidis. 2020. Video game level repair via mixed integer linear
programming. Proceedings of the AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment 16, 1 (Oct. 2020), 151–158.

https://doi.org/10.1007/978-3-642-36742-7_22
https://doi.org/10.1109/CoG51982.2022.9893616

	Abstract
	1 Introduction
	2 Related Work
	2.1 Procedural Content Generation
	2.2 Detecting Locks

	3 Methodology
	3.1 Sturgeon
	3.2 Reachability Categorization

	4 Generating Levels
	4.1 Games Used
	4.2 Levels using Prior Path Reachability
	4.3 Levels without Softlocks
	4.4 Levels with Softlocks
	4.5 Levels with Softlocks, Disconnected Sinks
	4.6 Impossible Levels
	4.7 Generation Times and Ranges
	4.8 Levels with Specific Applications

	5 Conclusion
	Acknowledgments
	References

