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ABSTRACT 

This paper investigates strategies to generate levels for action 

adventure games. This genre relies more strongly on well-

designed levels than rule-driven genres such as strategy or 

roleplaying games for which procedural level generation has been 

successful in the past. The approach outlined by this paper 

distinguishes between missions and spaces as two separate 

structures that need to be generated in two individual steps. It 

discusses the merits of different types of generative grammars for 

each individual step in the process.  
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1. INTRODUCTION 
Games with procedurally generated content have been around for 

some time. The classic example of this type of game is Rogue, an 

old Dungeons & Dragons style ASCII dungeon-crawling game 

which levels are generated every time the player starts a new 

game. The source code of newer games with procedural content is 

generally not accessible, so it is hard to determine what type of 

algorithms are used in the creation of their levels. The source code 

of older games is available and their level generating strategies are 

well documented on the internet. The typical approach of these 

games can be classified as a brute-force random algorithm that is 

tailored to the purpose of generating level structures that function 

for the type of game. One strategy is to generate a tile map that is 

filled with tiles representing solid rock and to „drill‟ tunnels and 

rooms into the map starting from an entrance. Multiple paths can 

be created by drilling into new directions from previously created 

locations. The dungeon is then populated with creatures, traps and 

treasures [1]. Another strategy involves zoning the dungeon into 

large tiles, generate dungeon rooms in some of these zones in the 

next step, and finally connecting the rooms with a network of 

corridors [2]. To create game space to represent wilderness areas 

cellular automata are used to generate more organic structures [3]. 

Although these algorithms have a proven track-record for the 

creation of roguelike games, the gameplay their output supports is 

rather limited. A typical major component of the gameplay of 

roguelike games is character building. This type of gameplay, 

which stems directly from a rather mechanistic interpretation of 

pen-and-paper roleplaying, resolves for a large part around 

gathering experience points and magical equipment to improve 

the main character. As game designer Ernest Adams points out in 

his satirical „letter from a dungeon‟, there seems to be little 

purpose behind these mechanics, resulting in a shallow 

representation of character growth as a faint echo of the mythical 

quest [4]. Gameplay of this type, although forming a viable niche 

of its own, is well suited for a random dungeon layout and does 

not require the same level of level-design quality as, for example, 

an action adventure game from the Zelda series in which this style 

of character development plays only a little part, as is mentioned 

in an interview by Shigeru Miyamoto, the series main designer 

[5]. Just as the random encounter table is an appreciated tool to 

facilitate a particular style, but not all styles, of role-playing in 

Dungeons & Dragons [6]. 

It is in a similar light that Kate Compton and Michael Mateas 

point out that generating levels for an action platform game is 

more difficult as level design is a far more critical aspect of that 

type of game [7]. Action adventures rely on level design 

principles that result in enjoyable exploration, flow and narrative 

structure, too. As it turns out, these principles are difficult to 

implement with the algorithms commonly encountered in 

roguelike games. These algorithms generally cannot express these 

principles as they mostly operate on a larger scale than the scale 

of individual dungeon rooms and corridors. In order to generate 

game levels informed by such principles we need to turn to a 

method that does operate on the scale on which these principles 

reside. This method is the use of generative grammars.  

However, even with the use of generative grammars, generating 

good levels is still very hard. Levels often have a random feel to it 

and tend to lack overall structure. To search simply for a single 

generative grammar to tackle all these problems is not going to 

work. Well-designed levels generally have two, instead of one 

structures; a level generally consists of a mission and a space. 

This paper suggests that both missions and spaces are best 

generated separately using types of generative grammars that suit 

the particular needs of each structure. As outlined in the final 

sections of this paper, the route presented here is to generate 

missions first and then generate spaces to accommodate these 

missions. 

2. MISSIONS AND SPACES 
In a detailed study of the level design of the Forest Temple level 

of The Legend of Zelda: The Twilight Princess, conducted by the 

author and described in more detail elsewhere [8], two different 

structures emerge that both describe the level. First, there is the 
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geometrical lay-out of the level: the space. Level space can be 

abstracted into a network of nodes and edges to represent rooms 

and their connections. Second, there is the series of tasks to player 

needs to complete in order to get to the end of the level: the actual 

mission. The mission can be represented by a directed graph 

indicating which tasks are made available by the completion of a 

preceding task. The mission dictates a logical order for the 

completion of the tasks, which is independent of the geometric 

lay-out. As can been seen in figure 1, the mission can be mapped 

to the game space. In this case certain parts of the space and the 

mission are isomorphic. In particular, in the first section of the 

level mission and space correspond rather closely. Isomorphisms 

between mission and space is frequently encountered in many 

games, but the differences between the two structures are often 

just as important.  

Level space accommodates the mission and the mission is mapped 

onto the space, but otherwise the two are independent of each 

other. The same mission can be mapped to many different spaces, 

and one space can support multiple different missions. The 

principles that govern the design of both structures also differ. A 

linear mission, in which all tasks can only be completed in a 

single, fixed order, can be mapped onto a non-linear spatial 

configuration. Likewise, a non-linear mission featuring many 

parallel challenges and alternative options, can be mapped on to a 

strictly linear space, resulting in the player having to travel back 

and forth a lot. 

Some qualities of a level can be attributed to its mission while 

others are a function of its space. For example, in Zelda levels, 

and indeed in many Nintendo games, it is common strategy to 

train the player in the available moves and techniques using a 

structure that is also found in martial arts training [9]. Following 

this structure a player first learns a simple technique in isolation 

(the kihon stage), then she repeats the technique in order to 

perfect it (the kihon-kata stage). In practicing martial arts this 

repetition can be long and tedious; an excellent example of this 

can be found in the film Karate Kid where the hero practices his 

skills to perfection by performing the same task over and over 

again (“wax-in, wax-out”). Next, the player learns how different 

techniques can be combined (the kata stage) before her real skills 

are tested in a boss fight (the kumite stage). This structure can be 

witnessed in the Forest Temple level. In this level Link first learns 

how to use „bomblings‟ to attack creatures and unblock passages 

(kihon), he must repeat this feat a couple of times in order to 

progress (kihon-kata). He also obtains a special boomerang which 

he learns to use in similar series of relative simple tasks (kihon, 

kihon-kata). Towards the end Link must combine bomblings and 

his boomerang in order to get to the last monkey, which he needs 

to reach the last rooms in the temple (kata), where he must to use 

the same techniques to defeat the final level-boss (kumite). 

At the same time, the mission in the Forest Temple also follows a 

similar structure that is often found in Hollywood films and that 

can ultimately be attributed to Joseph Campbell‟s monomyth (see 

 

Figure 1. Mission and space in the Forest Temple level of The Legend of Zelda: The Twilight Princess 

 



[10] & [11]). Following this structure, the player crosses into the 

realm of adventure (the dungeon) after a confrontation with a 

threshold guardian. Around halfway or two-thirds into the level 

the player defeats a mid-level boss and obtains the boomerang 

signaling the start of the third and final act which ends with the 

defeat of the level boss. The spatial qualities of the Forest Temple 

are different. Its basic layout follows a hub-and-spoke layout that 

provides easy access to many parts of the temple. The boomerang 

acts as key to many locks that can be encountered right from the 

beginning. Once it is obtained extra rooms in the temple are 

unlocked for the player to explore, a structure frequently found in 

adventure games [12]. 

3. GENERATIVE GRAMMARS 
Generative grammars originate in linguistics where they are used 

as a model to describe sets of linguistic phrases [13]. In theory, a 

generative grammar can be created that is able to produce all 

correct phrases of a language. A generative grammar typically 

consists of an alphabet and a set of rules. The alphabet is a set of 

symbols the grammar works with. The rules employ rewrite 

operations: a rule specifies what symbol can be replaced by what 

other symbols to form a new string. For example: a rule in a 

grammar might specify that in a string of symbols, symbol „S‟ can 

be replaced by the symbols „ab‟. This rule would normally be 

written down as „S  ab‟. Generative grammars typically replace 

the symbol (or group of symbols) on the left-hand side of the 

arrow with a symbol or group of symbols on the right-hand side. 

Therefore, it is common to refer to the symbols to be replaced as 

the left-hand side of the rule and to refer to the new symbols as 

the right-hand side. Some symbols in the alphabet can never be 

replaced because there are no rules that specify their replacement. 

These symbols are called terminals and the convention is to 

represent them with lowercase characters. The symbols „a‟ en „b‟ 

in the last example are terminals. Non-terminals have rules that 

specify their replacement and are conventionally represented by 

uppercase characters. The symbol „S‟ from the previous rules is an 

example. For a grammar that describes natural language 

sentences, terminal symbols might be words, whereas non-

terminal symbols represent functional word groups, such as noun-

phrases and verb-phrases. The denominator „S‟ is often used for a 

grammar‟s start symbol. A generative grammar needs at least one 

symbol to replace; it cannot start from nothing. Therefore, a 

complete generative grammar also specifies a start symbol.  

Grammars like these are used in computer science to create 

language and code parsers; they are designed to understand and 

recognize language. However, grammars are also suited to 

generate language. It is easy to see that simple rules can produce 

quite interesting result especially when the rules allow for 

recursion: when the rules produce non-terminal symbols that can 

directly or indirectly result in the application of the same rule 

recursively. The rule „S  abS‟ is an example of a recursive rule 

and will produce endless strings of ab‟s. The rule „S  aSb‟ is 

another example and generates a string of a‟s followed by an 

equal number of b‟s. Generative grammars developed for natural 

languages are capable of capturing concepts that transcend the 

level of individual words, such as argument construction and 

rhetoric, which suggests that generative grammars developed for 

games should be able to capture higher level design principles that 

lead to interesting levels at both micro and macro scopes.  

Generative grammars can be used to describe games when the 

alphabet of the grammar consists of a series of symbols to 

represent game specific concepts, and the rules define sensible 

ways in which these concepts can be combined to create well-

formed levels. A grammar that describes the possible levels of an 

adventure game, for example, might include the terminal symbols 

„key‟, „lock‟, „room‟, „monster‟, „treasure‟. While the rules for 

that grammar might include: 

1. Dungeon  Obstacle + treasure 

2. Obstacle  key + Obstacle + lock + Obstacle 

3. Obstacle  monster + Obstacle 

4. Obstacle  room 

In this case, when multiple rules specify possible replacements for 

the same non-terminal symbol, only one rule will be selected. This 

can be done (pseudo-)randomly. The rules can generate a wide 

variety of strings including: 

1. key + monster + room + lock + monster + room + treasure 

2. key + monster + key + room + lock + monster + room + lock + 

room + treasure 

3. room + treasure 

4. monster + monster + monster + monster + room + treasure 

The strings produced by the grammar discussed above are not all 

suited for a game level. Especially string 3 is far too short even in 

the limited example above. The problem is not with generative 

grammars as such but the quality of the rules used in the example. 

In fact generative grammar can easily counter these problems by 

creating rules that capture level design principles better, such as: 

1. Dungeon  Obstacle + Obstacle + Obstacle + Obstacle + 

treasure 

2. Dungeon  Threshold Guardian + Obstacle + Mini-Boss + 

reward + Obstacle + Level-Boss + treasure. 

Where rule 1 incorporates the idea that a dungeon needs to have a 

minimal length to be interesting at all, and rule 2 directly 

incorporates a three act story structure like the one described for 

Forest Temple level of Zelda: The Twilight Princess above.  

Generative grammars can be used in different ways to produce 

content for games. Game experts and designers can produce a 

grammar to generate content for a particular game. Drafting such 

a grammar would by no means be an easy task, but the initial 

effort vastly outweighs the ease by which new content can be 

generated or adjusted. Furthermore, grammars and procedurally 

content can be used to aid the designer by automating some, but 

not all, design tasks. This approach was taken by Epic Games for 

the generation of buildings and large urban landscapes. It proved 

to be very versatile as it allowed designers to quickly regenerate 

previous sections with the same constraints but with new rule sets 

without having to redo a whole section by hand [14]. Finally, it 

would be possible to grow grammars using evolutionary 

algorithms that select successful content from a test environment. 

The grammars presented in this paper were all drafted using the 

first method. Evolutionary grammars, although a tantalizing 

concept, are beyond the scope of the material presented here. 

Relevant applications of generative grammars can also be found in 

with Lindenmayer Systems (L-Systems). Lindenmayer was a 

biologist who used grammars to describe the growth of plants, but 

L-Systems have been applied to generate many different spatial 

outputs [15]. L-Systems are used today in games to generate trees 

and other natural structures. L-Systems have been extended for 



the procedural generation of city models [16]. This extension 

serves to create looped networks of roads, where original L-

Systems only generate tree-structures. The extension allows a 

street that is generated close to a previously generated street to 

intersect the latter, and thus create a loop back to the previously 

generated structure. 

4. GRAPH GRAMMAR TO GENERATE 

MISSIONS 
Graph grammars are discussed in relation with level generation by 

David Adams in his 2002 Bachelors thesis Automatic Generation 

of Dungeons for Computer Games [17]. Graph grammars are a 

specialized form of generative grammars that does not produce 

strings but graphs consisting of edges and nodes. In a graph 

grammar one or several nodes and interconnecting edges can be 

replaced by a new structure of nodes and edges (see figures 2 & 3; 

[18]). After a group of nodes have been selected for replacement 

as described by a particular rule, the selected nodes are numbered 

according to the left-hand side of the rule (step 2 in figure 3). 

Next, all edges between the selected nodes are removed (step 3). 

The numbered nodes are then replaced by their equivalents (nodes 

with the same number) on the right-hand side of the rule (step 4). 

Then any nodes on the right-hand side that do not have an 

equivalent on the left-hand side are added to the graph (step 5). 

Finally, the edges connecting the new nodes are put into the graph 

as specified by the right-hand side of the rule (step 6) and the 

numbers are removed (step 7). Note that graph grammars can have 

operations that allow existing nodes to be removed, these 

operations are not used in this paper. 
 

 

Figure 2. An example of a graph grammar rule 
 

 

Figure 3. The replacement operations according the rules from 

figure 2. 

 

Figure 4. Rules to generate a mission 



Graph grammars are well suited to generate missions as missions 

are best expressed as nonlinear graphs. It would need an alphabet 

that consists of different tasks, including challenges and rewards. 

Figure 4 shows some rules to generate a mission structured 

similarly as the mission of the forest temple. Figure 5 shows 

sample output of the graph grammar. Note that this grammar 

includes two types of edges, represented by single arrows and 

double arrows; different types of edges is a feature that can be 

found in other graph grammars. In this case, the double edges 

indicate a tight coupling between the subordinate node and its 

super-ordinate: this means that the subordinate must be placed 

behind the superordinate in the generated space. It is specific to 

the implementation described in this paper. A normal edge 

represents a loose coupling and indicates the subordinate can be 

placed anywhere. This information is very important for the space 

generation algorithm (see section 6 below). 

5. SHAPE GRAMMAR TO GENERATE 

SPACE 
Shape grammars are most useful to generate space. Shape 

grammars have been around since the early 1970s after they were 

first described by George Stiny and James Gips [19]. Shape 

grammars shapes are replaced by new shapes following rewrite 

rules similar to those of generative grammar and graph grammar. 

Special markers are used to identify starting points and to help 

orientate (and sometimes scale) the new shapes.  

For example, imagine a shape grammar, which alphabet consists 

of three symbols: „a wall‟, „open space‟ and a „connection‟ (see 

figure 6a). In this grammar only the „connection‟ is a non-terminal 

symbol, which has a square marker with a triangle indicating its 

orientation. The grey marker on the right-hand side of a shape 

grammar rule as represented here, indicates where the original 

shape was and what its orientation was. We can design rules that 

determine that a connection can be replaced by a short piece of 

corridor, a T-fork or a wall, effectively closing the connection (see 

figure 6b). It should be apparent that the construction depicted in 

figure 6c is a possible output of these rules, provided that the start 

symbol was also a connection, and given that at every iteration a 

random connection was selected to be replaced. 

 

 

Figure 6. Shape grammar a) alphabet, b) rules and c) output 

 

 

Figure 7. Recursive shape rules and output 

Shape grammars, like any generative grammar can include 

recursion. Recursion is a good way to introduce more variation in 

the resulting shapes. For example, the rules in figure 7 are 

recursive and the shapes these rules produces will have a more 

natural (fractal) feel. In this case the implementation of the 

grammar should allow the right-hand side to be resized to match 

the size of the growing shape. 

6. GENERATING SPACE FROM MISSION 
In order to use a shape grammar to generate a space from a 

generated mission a few adjustments were made to the shape 

grammar. The terminal symbols in the mission need to function as 

building instructions for the shape grammar. To achieve this, each 

rule in the shape grammar was associated with a terminal symbol 

form in the mission grammar. The prototype that implements the 

 

Figure 5. A generated mission (from the rules in figure 4) 



shape grammar first finds the next symbol in the mission, looks 

for rules that implement that symbol, selects one at random based 

on their relative weight, then looks for possible locations where 

the rule could be applied, and finally selects one location 

randomly based on their relative fitness (one location might be 

more suitable than another). The algorithm stores a reference to 

the mission symbol for which each element was generated, 

allowing the algorithm to implement the tight coupling as dictated 

by the mission. This prevents the algorithm from placing keys and 

items at random locations instead of behind tests or locks as 

specified by the mission. The shape grammar is further extended 

with some dynamic parameters that influence the rule selection. 

These parameters are used to create progressive difficulty or to 

shift between different „registers‟. For example the grammar can 

increase the chance of selecting rules with more difficult obstacles 

with every step, and switch from a register that causes it to build 

many traps to a register that causes it to include many monsters. 

In the test application supporting this research, rules can have 

commands associated with them. These commands are executed 

either before or after the application of a rule. These commands 

 

Figure 8. Shape grammar rules to generate missions 

 

 

Figure 9. Space generation using the rules from figure 8 and part of the mission from figure 5. 



facilitate dynamic rule weights and progressive difficulty among 

other things. 

Another addition to the shape grammar was inspired by the 

automatic creation of road intersection in city modeling L-

Systems (see section 3). In order to ensure that the growing space 

actually reconnects to previously generated parts, a step was 

added to the algorithm. This step is executed after a rule has been 

placed in the space, and looks for two connections that are in 

close proximity and in the correct alignment to be connected, and 

connect the two spaces. To prevent short circuiting the mission, 

by accidently connecting the final room to a room near the 

entrance, all open connections in the generated structure can be 

closed off after or before the implementation of a particular rule. 

The commands associated with a rule were used to implement this 

type of logic. 

Once the complete mission is accounted for, the shape grammar 

reverts to a normal implementation, and will continue to iterate 

until all non-terminals are replaced with terminal symbols using a 

set of rules designed to finalize the space (or perhaps to grow 

some additional branches). Figure 8 lists some rules for a shape 

grammar constructed in this way. Figure 9 illustrates a few 

iterations in the construction of a level based on the first part of 

the mission presented in Figure 5 above. 

In theory it should not be very difficult to generate maps that can 

accommodate multiple missions. Missions could be blended, with 

the generator alternating between missions when selecting the 

next task to accommodate on the map. Alternatively, a second 

mission is used as building instructions after the first mission has 

been completely accounted for. 

7. INVOLVING PLAYER PERFORMANCE 
The generation techniques discussed in this paper can also be 

employed to (partly) generate levels during play, allowing for the 

opportunity to let the actual performance of the player impact this 

generation. A good strategy would be to generate a mission before 

a level starts, ensuring the level will have an interesting overall 

structure, while the space grows in response to the players 

movements. As this generation of the game world occurs during 

play and could involve dynamic weights for the different space 

rules, this allows for the actual performance of the player to 

inform the construction of the world. For example, if the player 

already has encountered and fought many monsters, the rules that 

would generate more monsters might decrease weight while rules 

that would generate obstacles of a different type might increase in 

weight. This would ensure varied gameplay. Or, when the player 

performance indicates she enjoys these fights (for example 

because she goes after every monster she can find), we might 

throw more, and tougher, monsters at her. A feedback loop 

between the actual performance the player and the generation of 

the game offers are many opportunities. 

A lighter variant of this approach leaves a few non-terminals in 

the generated space to be replaced during play. Such non-

terminals could specify that there is an obstacle or a reward in a 

particular dungeon room, without specifying what the nature of 

the obstacle or the reward is until the player triggers the 

replacement of the non-terminal by entering the room or opening 

the container. This allows the game to dynamically alter both the 

challenges and the rewards in reaction to the players performance 

and status. 

Another, more difficult possibility, is to generate the mission on 

the fly. The best strategy would be to generate a mission that still 

has some non-terminals in its structure before constructing the 

space. The replacement of these non-terminals should occur 

during play, and should be informed by the performance of the 

player directly or indirectly. The space could either grow in 

response to the changes in the mission, or already have 

accommodated all possibilities. This could quite literally lead to 

an implementation of an interactive structure that Marie-Laure 

Ryan calls a fractal story where a story keeps offering more and 

more detail as the player turns her attention to certain parts of the 

story [20]. 

8. CONCLUSIONS 
The levels of action adventure games are double structures 

consisting of both a space and a mission. When generating levels 

for this genre procedurally, it is best to break down the generation 

process in two steps. Generative graph grammars are suited to 

generate missions. They are capable of generating non-linear 

structures which for games of exploration are preferred over linear 

structures. At the same time they can also capture the larger 

structures required for a well-formed game experience. Once a 

mission is generated an extended form of shape grammar can be 

used to grow a space that can accommodate the generated 

mission. This requires some modifications to the common 

implementation of shape grammars. The most important 

modification is the association of a rule in the shape grammar 

with a terminal symbol in the grammar used to generate the 

mission. 

Breaking down the process into these two steps allows us to 

capitalize on the strengths of each type of grammar. With a well-

designed set of rules and the clever use of recursion, this method 

can be employed to generate interesting and varied levels that are 

fun to explore and offer a complete experience. Furthermore, 

these techniques can be used to generate levels on the fly, 

allowing the game to respond to the player performance. This 

opens up opportunities for gaming and interactive storytelling that 

hitherto have hardly been examined. 

Although the principles behind this strategy for procedural 

content generation are independent of an implementation for a 

particular game, the grammars themselves are not. Mission and 

space grammars must be build with a clear vision of what the final 

game will be like. Furthermore, the quality of the grammars is 

going to be a critical factor for the quality of the game, their 

creation requires involvement of expert game designers or the use 

of evolutionary algorithms not described here. Nevertheless, using 

mission and space grammars are an efficient way of generating a 

high variety of quality levels for action adventure games. 
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