
Adventures in Level Design: Generating Missions and

Spaces for Action Adventure Games
 Joris Dormans

Hogeschool van Amsterdam
Weesperzijde 190

1097DZ Amsterdam, The Netherlands
+31 20 595 1686

j.dormans@hva.nl

ABSTRACT

This paper investigates strategies to generate levels for action

adventure games. This genre relies more strongly on well-

designed levels than rule-driven genres such as strategy or

roleplaying games for which procedural level generation has been

successful in the past. The approach outlined by this paper

distinguishes between missions and spaces as two separate

structures that need to be generated in two individual steps. It

discusses the merits of different types of generative grammars for

each individual step in the process.

Keywords

Procedural generation; level design; action adventure games.

1. INTRODUCTION
Games with procedurally generated content have been around for

some time. The classic example of this type of game is Rogue, an

old Dungeons & Dragons style ASCII dungeon-crawling game

which levels are generated every time the player starts a new

game. The source code of newer games with procedural content is

generally not accessible, so it is hard to determine what type of

algorithms are used in the creation of their levels. The source code

of older games is available and their level generating strategies are

well documented on the internet. The typical approach of these

games can be classified as a brute-force random algorithm that is

tailored to the purpose of generating level structures that function

for the type of game. One strategy is to generate a tile map that is

filled with tiles representing solid rock and to „drill‟ tunnels and

rooms into the map starting from an entrance. Multiple paths can

be created by drilling into new directions from previously created

locations. The dungeon is then populated with creatures, traps and

treasures [1]. Another strategy involves zoning the dungeon into

large tiles, generate dungeon rooms in some of these zones in the

next step, and finally connecting the rooms with a network of

corridors [2]. To create game space to represent wilderness areas

cellular automata are used to generate more organic structures [3].

Although these algorithms have a proven track-record for the

creation of roguelike games, the gameplay their output supports is

rather limited. A typical major component of the gameplay of

roguelike games is character building. This type of gameplay,

which stems directly from a rather mechanistic interpretation of

pen-and-paper roleplaying, resolves for a large part around

gathering experience points and magical equipment to improve

the main character. As game designer Ernest Adams points out in

his satirical „letter from a dungeon‟, there seems to be little

purpose behind these mechanics, resulting in a shallow

representation of character growth as a faint echo of the mythical

quest [4]. Gameplay of this type, although forming a viable niche

of its own, is well suited for a random dungeon layout and does

not require the same level of level-design quality as, for example,

an action adventure game from the Zelda series in which this style

of character development plays only a little part, as is mentioned

in an interview by Shigeru Miyamoto, the series main designer

[5]. Just as the random encounter table is an appreciated tool to

facilitate a particular style, but not all styles, of role-playing in

Dungeons & Dragons [6].

It is in a similar light that Kate Compton and Michael Mateas

point out that generating levels for an action platform game is

more difficult as level design is a far more critical aspect of that

type of game [7]. Action adventures rely on level design

principles that result in enjoyable exploration, flow and narrative

structure, too. As it turns out, these principles are difficult to

implement with the algorithms commonly encountered in

roguelike games. These algorithms generally cannot express these

principles as they mostly operate on a larger scale than the scale

of individual dungeon rooms and corridors. In order to generate

game levels informed by such principles we need to turn to a

method that does operate on the scale on which these principles

reside. This method is the use of generative grammars.

However, even with the use of generative grammars, generating

good levels is still very hard. Levels often have a random feel to it

and tend to lack overall structure. To search simply for a single

generative grammar to tackle all these problems is not going to

work. Well-designed levels generally have two, instead of one

structures; a level generally consists of a mission and a space.

This paper suggests that both missions and spaces are best

generated separately using types of generative grammars that suit

the particular needs of each structure. As outlined in the final

sections of this paper, the route presented here is to generate

missions first and then generate spaces to accommodate these

missions.

2. MISSIONS AND SPACES
In a detailed study of the level design of the Forest Temple level

of The Legend of Zelda: The Twilight Princess, conducted by the

author and described in more detail elsewhere [8], two different

structures emerge that both describe the level. First, there is the

Permission to make digital or hard copies of all or part of this work

for personal or classroom use is granted without fee provided that

copies are not made or distributed for profit or commercial advantage

and that copies bear this notice and the full citation on the first
page. To copy otherwise, to republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a

fee.

PCGames 2010, June 18, Monterey, CA, USA

Copyright 2010 ACM 978-1-4503-0023-0/10/06... $10.00

geometrical lay-out of the level: the space. Level space can be

abstracted into a network of nodes and edges to represent rooms

and their connections. Second, there is the series of tasks to player

needs to complete in order to get to the end of the level: the actual

mission. The mission can be represented by a directed graph

indicating which tasks are made available by the completion of a

preceding task. The mission dictates a logical order for the

completion of the tasks, which is independent of the geometric

lay-out. As can been seen in figure 1, the mission can be mapped

to the game space. In this case certain parts of the space and the

mission are isomorphic. In particular, in the first section of the

level mission and space correspond rather closely. Isomorphisms

between mission and space is frequently encountered in many

games, but the differences between the two structures are often

just as important.

Level space accommodates the mission and the mission is mapped

onto the space, but otherwise the two are independent of each

other. The same mission can be mapped to many different spaces,

and one space can support multiple different missions. The

principles that govern the design of both structures also differ. A

linear mission, in which all tasks can only be completed in a

single, fixed order, can be mapped onto a non-linear spatial

configuration. Likewise, a non-linear mission featuring many

parallel challenges and alternative options, can be mapped on to a

strictly linear space, resulting in the player having to travel back

and forth a lot.

Some qualities of a level can be attributed to its mission while

others are a function of its space. For example, in Zelda levels,

and indeed in many Nintendo games, it is common strategy to

train the player in the available moves and techniques using a

structure that is also found in martial arts training [9]. Following

this structure a player first learns a simple technique in isolation

(the kihon stage), then she repeats the technique in order to

perfect it (the kihon-kata stage). In practicing martial arts this

repetition can be long and tedious; an excellent example of this

can be found in the film Karate Kid where the hero practices his

skills to perfection by performing the same task over and over

again (“wax-in, wax-out”). Next, the player learns how different

techniques can be combined (the kata stage) before her real skills

are tested in a boss fight (the kumite stage). This structure can be

witnessed in the Forest Temple level. In this level Link first learns

how to use „bomblings‟ to attack creatures and unblock passages

(kihon), he must repeat this feat a couple of times in order to

progress (kihon-kata). He also obtains a special boomerang which

he learns to use in similar series of relative simple tasks (kihon,

kihon-kata). Towards the end Link must combine bomblings and

his boomerang in order to get to the last monkey, which he needs

to reach the last rooms in the temple (kata), where he must to use

the same techniques to defeat the final level-boss (kumite).

At the same time, the mission in the Forest Temple also follows a

similar structure that is often found in Hollywood films and that

can ultimately be attributed to Joseph Campbell‟s monomyth (see

Figure 1. Mission and space in the Forest Temple level of The Legend of Zelda: The Twilight Princess

[10] & [11]). Following this structure, the player crosses into the

realm of adventure (the dungeon) after a confrontation with a

threshold guardian. Around halfway or two-thirds into the level

the player defeats a mid-level boss and obtains the boomerang

signaling the start of the third and final act which ends with the

defeat of the level boss. The spatial qualities of the Forest Temple

are different. Its basic layout follows a hub-and-spoke layout that

provides easy access to many parts of the temple. The boomerang

acts as key to many locks that can be encountered right from the

beginning. Once it is obtained extra rooms in the temple are

unlocked for the player to explore, a structure frequently found in

adventure games [12].

3. GENERATIVE GRAMMARS
Generative grammars originate in linguistics where they are used

as a model to describe sets of linguistic phrases [13]. In theory, a

generative grammar can be created that is able to produce all

correct phrases of a language. A generative grammar typically

consists of an alphabet and a set of rules. The alphabet is a set of

symbols the grammar works with. The rules employ rewrite

operations: a rule specifies what symbol can be replaced by what

other symbols to form a new string. For example: a rule in a

grammar might specify that in a string of symbols, symbol „S‟ can

be replaced by the symbols „ab‟. This rule would normally be

written down as „S  ab‟. Generative grammars typically replace

the symbol (or group of symbols) on the left-hand side of the

arrow with a symbol or group of symbols on the right-hand side.

Therefore, it is common to refer to the symbols to be replaced as

the left-hand side of the rule and to refer to the new symbols as

the right-hand side. Some symbols in the alphabet can never be

replaced because there are no rules that specify their replacement.

These symbols are called terminals and the convention is to

represent them with lowercase characters. The symbols „a‟ en „b‟

in the last example are terminals. Non-terminals have rules that

specify their replacement and are conventionally represented by

uppercase characters. The symbol „S‟ from the previous rules is an

example. For a grammar that describes natural language

sentences, terminal symbols might be words, whereas non-

terminal symbols represent functional word groups, such as noun-

phrases and verb-phrases. The denominator „S‟ is often used for a

grammar‟s start symbol. A generative grammar needs at least one

symbol to replace; it cannot start from nothing. Therefore, a

complete generative grammar also specifies a start symbol.

Grammars like these are used in computer science to create

language and code parsers; they are designed to understand and

recognize language. However, grammars are also suited to

generate language. It is easy to see that simple rules can produce

quite interesting result especially when the rules allow for

recursion: when the rules produce non-terminal symbols that can

directly or indirectly result in the application of the same rule

recursively. The rule „S  abS‟ is an example of a recursive rule

and will produce endless strings of ab‟s. The rule „S  aSb‟ is

another example and generates a string of a‟s followed by an

equal number of b‟s. Generative grammars developed for natural

languages are capable of capturing concepts that transcend the

level of individual words, such as argument construction and

rhetoric, which suggests that generative grammars developed for

games should be able to capture higher level design principles that

lead to interesting levels at both micro and macro scopes.

Generative grammars can be used to describe games when the

alphabet of the grammar consists of a series of symbols to

represent game specific concepts, and the rules define sensible

ways in which these concepts can be combined to create well-

formed levels. A grammar that describes the possible levels of an

adventure game, for example, might include the terminal symbols

„key‟, „lock‟, „room‟, „monster‟, „treasure‟. While the rules for

that grammar might include:

1. Dungeon  Obstacle + treasure

2. Obstacle  key + Obstacle + lock + Obstacle

3. Obstacle  monster + Obstacle

4. Obstacle  room

In this case, when multiple rules specify possible replacements for

the same non-terminal symbol, only one rule will be selected. This

can be done (pseudo-)randomly. The rules can generate a wide

variety of strings including:

1. key + monster + room + lock + monster + room + treasure

2. key + monster + key + room + lock + monster + room + lock +

room + treasure

3. room + treasure

4. monster + monster + monster + monster + room + treasure

The strings produced by the grammar discussed above are not all

suited for a game level. Especially string 3 is far too short even in

the limited example above. The problem is not with generative

grammars as such but the quality of the rules used in the example.

In fact generative grammar can easily counter these problems by

creating rules that capture level design principles better, such as:

1. Dungeon  Obstacle + Obstacle + Obstacle + Obstacle +

treasure

2. Dungeon  Threshold Guardian + Obstacle + Mini-Boss +

reward + Obstacle + Level-Boss + treasure.

Where rule 1 incorporates the idea that a dungeon needs to have a

minimal length to be interesting at all, and rule 2 directly

incorporates a three act story structure like the one described for

Forest Temple level of Zelda: The Twilight Princess above.

Generative grammars can be used in different ways to produce

content for games. Game experts and designers can produce a

grammar to generate content for a particular game. Drafting such

a grammar would by no means be an easy task, but the initial

effort vastly outweighs the ease by which new content can be

generated or adjusted. Furthermore, grammars and procedurally

content can be used to aid the designer by automating some, but

not all, design tasks. This approach was taken by Epic Games for

the generation of buildings and large urban landscapes. It proved

to be very versatile as it allowed designers to quickly regenerate

previous sections with the same constraints but with new rule sets

without having to redo a whole section by hand [14]. Finally, it

would be possible to grow grammars using evolutionary

algorithms that select successful content from a test environment.

The grammars presented in this paper were all drafted using the

first method. Evolutionary grammars, although a tantalizing

concept, are beyond the scope of the material presented here.

Relevant applications of generative grammars can also be found in

with Lindenmayer Systems (L-Systems). Lindenmayer was a

biologist who used grammars to describe the growth of plants, but

L-Systems have been applied to generate many different spatial

outputs [15]. L-Systems are used today in games to generate trees

and other natural structures. L-Systems have been extended for

the procedural generation of city models [16]. This extension

serves to create looped networks of roads, where original L-

Systems only generate tree-structures. The extension allows a

street that is generated close to a previously generated street to

intersect the latter, and thus create a loop back to the previously

generated structure.

4. GRAPH GRAMMAR TO GENERATE

MISSIONS
Graph grammars are discussed in relation with level generation by

David Adams in his 2002 Bachelors thesis Automatic Generation

of Dungeons for Computer Games [17]. Graph grammars are a

specialized form of generative grammars that does not produce

strings but graphs consisting of edges and nodes. In a graph

grammar one or several nodes and interconnecting edges can be

replaced by a new structure of nodes and edges (see figures 2 & 3;

[18]). After a group of nodes have been selected for replacement

as described by a particular rule, the selected nodes are numbered

according to the left-hand side of the rule (step 2 in figure 3).

Next, all edges between the selected nodes are removed (step 3).

The numbered nodes are then replaced by their equivalents (nodes

with the same number) on the right-hand side of the rule (step 4).

Then any nodes on the right-hand side that do not have an

equivalent on the left-hand side are added to the graph (step 5).

Finally, the edges connecting the new nodes are put into the graph

as specified by the right-hand side of the rule (step 6) and the

numbers are removed (step 7). Note that graph grammars can have

operations that allow existing nodes to be removed, these

operations are not used in this paper.

Figure 2. An example of a graph grammar rule

Figure 3. The replacement operations according the rules from

figure 2.

Figure 4. Rules to generate a mission

Graph grammars are well suited to generate missions as missions

are best expressed as nonlinear graphs. It would need an alphabet

that consists of different tasks, including challenges and rewards.

Figure 4 shows some rules to generate a mission structured

similarly as the mission of the forest temple. Figure 5 shows

sample output of the graph grammar. Note that this grammar

includes two types of edges, represented by single arrows and

double arrows; different types of edges is a feature that can be

found in other graph grammars. In this case, the double edges

indicate a tight coupling between the subordinate node and its

super-ordinate: this means that the subordinate must be placed

behind the superordinate in the generated space. It is specific to

the implementation described in this paper. A normal edge

represents a loose coupling and indicates the subordinate can be

placed anywhere. This information is very important for the space

generation algorithm (see section 6 below).

5. SHAPE GRAMMAR TO GENERATE

SPACE
Shape grammars are most useful to generate space. Shape

grammars have been around since the early 1970s after they were

first described by George Stiny and James Gips [19]. Shape

grammars shapes are replaced by new shapes following rewrite

rules similar to those of generative grammar and graph grammar.

Special markers are used to identify starting points and to help

orientate (and sometimes scale) the new shapes.

For example, imagine a shape grammar, which alphabet consists

of three symbols: „a wall‟, „open space‟ and a „connection‟ (see

figure 6a). In this grammar only the „connection‟ is a non-terminal

symbol, which has a square marker with a triangle indicating its

orientation. The grey marker on the right-hand side of a shape

grammar rule as represented here, indicates where the original

shape was and what its orientation was. We can design rules that

determine that a connection can be replaced by a short piece of

corridor, a T-fork or a wall, effectively closing the connection (see

figure 6b). It should be apparent that the construction depicted in

figure 6c is a possible output of these rules, provided that the start

symbol was also a connection, and given that at every iteration a

random connection was selected to be replaced.

Figure 6. Shape grammar a) alphabet, b) rules and c) output

Figure 7. Recursive shape rules and output

Shape grammars, like any generative grammar can include

recursion. Recursion is a good way to introduce more variation in

the resulting shapes. For example, the rules in figure 7 are

recursive and the shapes these rules produces will have a more

natural (fractal) feel. In this case the implementation of the

grammar should allow the right-hand side to be resized to match

the size of the growing shape.

6. GENERATING SPACE FROM MISSION
In order to use a shape grammar to generate a space from a

generated mission a few adjustments were made to the shape

grammar. The terminal symbols in the mission need to function as

building instructions for the shape grammar. To achieve this, each

rule in the shape grammar was associated with a terminal symbol

form in the mission grammar. The prototype that implements the

Figure 5. A generated mission (from the rules in figure 4)

shape grammar first finds the next symbol in the mission, looks

for rules that implement that symbol, selects one at random based

on their relative weight, then looks for possible locations where

the rule could be applied, and finally selects one location

randomly based on their relative fitness (one location might be

more suitable than another). The algorithm stores a reference to

the mission symbol for which each element was generated,

allowing the algorithm to implement the tight coupling as dictated

by the mission. This prevents the algorithm from placing keys and

items at random locations instead of behind tests or locks as

specified by the mission. The shape grammar is further extended

with some dynamic parameters that influence the rule selection.

These parameters are used to create progressive difficulty or to

shift between different „registers‟. For example the grammar can

increase the chance of selecting rules with more difficult obstacles

with every step, and switch from a register that causes it to build

many traps to a register that causes it to include many monsters.

In the test application supporting this research, rules can have

commands associated with them. These commands are executed

either before or after the application of a rule. These commands

Figure 8. Shape grammar rules to generate missions

Figure 9. Space generation using the rules from figure 8 and part of the mission from figure 5.

facilitate dynamic rule weights and progressive difficulty among

other things.

Another addition to the shape grammar was inspired by the

automatic creation of road intersection in city modeling L-

Systems (see section 3). In order to ensure that the growing space

actually reconnects to previously generated parts, a step was

added to the algorithm. This step is executed after a rule has been

placed in the space, and looks for two connections that are in

close proximity and in the correct alignment to be connected, and

connect the two spaces. To prevent short circuiting the mission,

by accidently connecting the final room to a room near the

entrance, all open connections in the generated structure can be

closed off after or before the implementation of a particular rule.

The commands associated with a rule were used to implement this

type of logic.

Once the complete mission is accounted for, the shape grammar

reverts to a normal implementation, and will continue to iterate

until all non-terminals are replaced with terminal symbols using a

set of rules designed to finalize the space (or perhaps to grow

some additional branches). Figure 8 lists some rules for a shape

grammar constructed in this way. Figure 9 illustrates a few

iterations in the construction of a level based on the first part of

the mission presented in Figure 5 above.

In theory it should not be very difficult to generate maps that can

accommodate multiple missions. Missions could be blended, with

the generator alternating between missions when selecting the

next task to accommodate on the map. Alternatively, a second

mission is used as building instructions after the first mission has

been completely accounted for.

7. INVOLVING PLAYER PERFORMANCE
The generation techniques discussed in this paper can also be

employed to (partly) generate levels during play, allowing for the

opportunity to let the actual performance of the player impact this

generation. A good strategy would be to generate a mission before

a level starts, ensuring the level will have an interesting overall

structure, while the space grows in response to the players

movements. As this generation of the game world occurs during

play and could involve dynamic weights for the different space

rules, this allows for the actual performance of the player to

inform the construction of the world. For example, if the player

already has encountered and fought many monsters, the rules that

would generate more monsters might decrease weight while rules

that would generate obstacles of a different type might increase in

weight. This would ensure varied gameplay. Or, when the player

performance indicates she enjoys these fights (for example

because she goes after every monster she can find), we might

throw more, and tougher, monsters at her. A feedback loop

between the actual performance the player and the generation of

the game offers are many opportunities.

A lighter variant of this approach leaves a few non-terminals in

the generated space to be replaced during play. Such non-

terminals could specify that there is an obstacle or a reward in a

particular dungeon room, without specifying what the nature of

the obstacle or the reward is until the player triggers the

replacement of the non-terminal by entering the room or opening

the container. This allows the game to dynamically alter both the

challenges and the rewards in reaction to the players performance

and status.

Another, more difficult possibility, is to generate the mission on

the fly. The best strategy would be to generate a mission that still

has some non-terminals in its structure before constructing the

space. The replacement of these non-terminals should occur

during play, and should be informed by the performance of the

player directly or indirectly. The space could either grow in

response to the changes in the mission, or already have

accommodated all possibilities. This could quite literally lead to

an implementation of an interactive structure that Marie-Laure

Ryan calls a fractal story where a story keeps offering more and

more detail as the player turns her attention to certain parts of the

story [20].

8. CONCLUSIONS
The levels of action adventure games are double structures

consisting of both a space and a mission. When generating levels

for this genre procedurally, it is best to break down the generation

process in two steps. Generative graph grammars are suited to

generate missions. They are capable of generating non-linear

structures which for games of exploration are preferred over linear

structures. At the same time they can also capture the larger

structures required for a well-formed game experience. Once a

mission is generated an extended form of shape grammar can be

used to grow a space that can accommodate the generated

mission. This requires some modifications to the common

implementation of shape grammars. The most important

modification is the association of a rule in the shape grammar

with a terminal symbol in the grammar used to generate the

mission.

Breaking down the process into these two steps allows us to

capitalize on the strengths of each type of grammar. With a well-

designed set of rules and the clever use of recursion, this method

can be employed to generate interesting and varied levels that are

fun to explore and offer a complete experience. Furthermore,

these techniques can be used to generate levels on the fly,

allowing the game to respond to the player performance. This

opens up opportunities for gaming and interactive storytelling that

hitherto have hardly been examined.

Although the principles behind this strategy for procedural

content generation are independent of an implementation for a

particular game, the grammars themselves are not. Mission and

space grammars must be build with a clear vision of what the final

game will be like. Furthermore, the quality of the grammars is

going to be a critical factor for the quality of the game, their

creation requires involvement of expert game designers or the use

of evolutionary algorithms not described here. Nevertheless, using

mission and space grammars are an efficient way of generating a

high variety of quality levels for action adventure games.

9. ACKNOWLEDGMENTS
I would like to thank Jacob Brunekreef, Stéphane Bura, Ethan

Kennerly, Wilko Oskam and Remko Scha, for reading and

commenting on earlier drafts of this paper.

10. REFERENCES
[1] Anderson, Mike. Not dated. “Dungeon-Building Algorithm.

On RogueBasin”. DOI=

http://roguebasin.roguelikedevelopment.org/index.php?title=

Dungeon-Building_Algorithm

[2] Author unknow. Not dated. “Grid Based Dungeon Generator.

On RogueBasin”. DOI=

http://roguebasin.roguelikedevelopment.org/index.php?title=

Grid_Based_Dungeon_Generator

[3] Babcock, Jim. Not dated. “Cellular Automata Method for

Generating Random Cave-Like Levels”. On RogueBasin.

DOI=

http://roguebasin.roguelikedevelopment.org/index.php?title=

Cellular_Automata_Method_for_Generating_Random_Cave-

Like_Levels

[4] Adams, Ernest. 2000. “A letter from a dungeon”. Gamasutra.

DOI=http://www.gamasutra.com/view/feature/3424/the_desi

gners_notebook_a_letter_.php

[5] DeMaria, Rusel and Johnny L. Wilson. 2004. High Score!

The illustrated history of electronic games. McGraw-

Hill/Osborne, Emeryville, CA, 240.

[6] Dormans, Joris. 2006. “On the Role of the Die: A brief

ludologic study of pen-and-paper roleplaying games and

their rules”. Game Studies, vol 6-1, December 2006.

DOI=http://gamestudies.org/0601/articles/dormans

[7] Compton, Kate and Mateas Michael. 2006. “Procedural

Level Design for Platform Games”. Proceedings of the

American Association for Artificial Intelligence Conference,

2006, 109.

[8] Dormans, Joris. “Mission Space: Elemental Morphology for

Level Design”. Submitted to the IEEE-CIG-10 conference,

Copenhagen.

[9] Kohler, Chris. 2005. Power Up, How Japanese Video Games

Gave the World an Extra Life. Brady Games, Indianapolis,

IN.

[10] Campbell, Joseph. 1949. The Hero With A Thousand Faces.

Princeton University Press, Princeton, NJ.

[11] Vogler, Christopher. 2007. The Writer‟s Journey: Mythic

Structure for Writers, Third Edition. Michael Weis

Productions, Studio City, CA.

[12] Ashmore, Calvin & Nitsche, Michael. 2007. “The Quest in a

Generated World”. Proceedings of the DiGRA 2007

Conference, 506.

[13] Chomsky, Noam. 1972. Language And Mind, Enlarged

Edition. Harcourt Brace Jovanovich Inc, New York, NY.

[14] Golding, James. 2010. “Building Blocks: Artist Driven

Procedural Buildings”. Presentation at GDC 10, San

Francisco, CA.

[15] Mozgovoy, Maxim. 2010. Algorithms, Languages, Automata

and Compilers: A Practical Approach. Jones and Barlett

Publishers, LCC. Sudbury, MA.

[16] Parish, Yoav & Müller, Pascal. 2001. “Procedural Modeling

of Cities”. Procedeedings of th ACM SIGGRAPH 2001

Conference.

[17] Adams, David. 2002. Automatic Generation of Dungeons for

Computer Games. Bachelor thesis, University of Sheffield,

UK. DOI=

http://www.dcs.shef.ac.uk/intranet/teaching/projects/archive/

ug2002/pdf/u9da.pdf

[18] Rekers, J. 1995. “A Graph Grammar Approach to Graphical

Parsing”. Proceedings of the 11th International IEEE

Symposium on Visual Languages.

[19] Stiny, George & Gips, James. 1972. “Shape Grammars and

the Generative Specification of Painting and Sculpture”.

Proceedings of Information Processing 71.

[20] Ryan, Marie-Laure. 2001. Narrative as Virtual Reality,

Immersion and Interactivity in Literature and Electronic

Media. The Hohns Hopkins University Press, Baltimore,

MD, 337

