Generating Emergent Physics for Action-Adventure Games

Joris Dormans
Amsterdam Univeristy of Applied Sciences
Duivendrachtsekade 36-38
1096 AH Amsterdam, The Netherlands
j.dormans@hva.nl

ABSTRACT

Action-adventure games typically integrate levels, progres-
sion with the physical gameplay. In order to generate con-
tent for this type of games, this paper explores how pro-
cedural techniques can be expanded to beyond the domain
of generating levels, and into generating physical interac-
tions. It suggests a formal graph language to represent
physics and the network of causal relations between game
entities. Leveraging transformational grammars, the prin-
ciples of model driven architecture, and component-based
architecture for the game engine, it is argued that physics di-
agrams are well suited to generate emergent physical game-
play.

Categories and Subject Descriptors

K.8.0 [Personal Computing]: General—Games;

F.4.2 [Mathematical Logic and Formal Languages]:
Grammars and Other Rewriting Systems; J.6 [Computer-
Aided Engineering)

1. INTRODUCTION

Current research into procedural content generation for

games usually interprets game content as stories, missions
and levels. Most published games with procedural con-
tent (such as Elite, Rogue, Diablo, or Civilization) also fo-
cus on generating levels. In this paper I want to push the
boundaries of game content beyond level design, and inves-
tigate how game mechanics can be generated as well. This
paper is the result of my ongoing research towards build-
ing a procedurally generated action-adventure game. While
previous research also focused on generating missions and
spaces for this type of game, with this paper I aim to gen-
erate mechanics that govern the game’s physics. For action-
adventure games, novel mechanics is an important aspect
of the game, equally important to level design. Successful
games in that genre (such as The Legend of Zelda) closely
integrate the game physics with items and abilities that un-
lock new ‘moves’ for the player character and often act as a

‘lock and key’ mechanism; the players progress through the
level is controlled by these items and abilities [2].

In this paper I will take my research one step further by
generating physical interactions between different entities in
the game. The goal is to be able to generate interesting
behaviors for enemies, items, and power-ups that allow the
creation of interesting lock and key mechanisms, but also
generate interesting gameplay by themselves. The paper
is mostly theoretical, it outlines the general approach and
suggests ways of implementing these techniques; it does not
describe a working prototype. However, it does suggests how
a prototype could be implemented; it is based on current
efforts to implement the ideas presented within.

2. PREVIOUS AND RELATED WORK

Procedural content generation is a growing research topic
within academia and the games industry. Within this field,
generation of game mechanics is a relative new and not yet
explored as much. A recent survey of search-based tech-
niques for procedural content generation [25] lists a cou-
ple of dozen works in five categories that affect the main
gameplay and at least as many works focus on optional con-
tent. Of these categories, the category that focuses on rules
and mechanics, has only five works, two of which focus on
board games. Needless to say generation of game mechan-
ics is a huge and complex topic, that is best not tackled at
once. Mark Nelson and Michael Mateas suggest to break
down the problem of generating game mechanics into in-
terrelated four domains: abstract game mechanics, concrete
game representation, thematic content, and control map-
ping [17]. The research presented here focuses on the first
domain: abstract game mechanics. The work in this pa-
per has much in common with the approach taken by Adam
Smith and Michael Mateas [22]. However, where Smith and
Mateas use a code base representation of game rules, this
paper uses graph notation to achieve a similar aim. The
advantage of graph based representation of game mechan-
ics is that they are more accessible to non-programmers,
while they are still easily generated using graph grammars
[19]. Accessibility is important because the research drew
inspiration from the notion of mixed-initiative procedural
content generation [23, 21]. This approach aims to have the
computer and a human designer to collaborate during the
design/generation process, instead of generating a complete
level or a complete game with automatically with no input
from a designer. The research presented in this paper fol-
lows the same line: the aim is not just to generate game

mechanics, rather to create a automated method that sup-
ports designers to create game mechanics fast and effectively.
This approach suggests that procedural content generation
is not an aim in itself, but rather a means to formalize and
advance the game design lore.

This paper builds on my previous work in level generation
and game mechanic formalisms [5, 6]. In particular the work
on Ludoscope, a level generation tool that uses transforma-
tional graph and space grammars designed to generate levels
for action-adventures [8]. This work builds on the ideas of
model driven engineering in software engineering, where the
process of creating software is broken down into a series of
transformations applied on formal models representing the
domain or the software [4]. By breaking down the process of
designing levels for an action-adventure game into a series
of transformations, and by designing different transforma-
tional grammars to specify each transformation, I was able
to create a flexible tool that can generate a wide variety of
levels. In previous papers, I focused on two steps in the pro-
cess of designing action-adventure games: the generation of
missions (a series of tasks the player needs to perform to
complete a level) and the generation of a space to accommo-
date the mission. The formal models used for each step are
graphs. This means that the transformations are described
by graph grammars [13].

The approach to the generation of physical interactions in
action-adventure games taken in this paper is similar to the
approach taken in my previous work: rather than taking al-
gorithms as a starting point, the techniques build on an ab-
stracted, formal understanding of the game mechanics first
and foremost. In this case, I will look at a formal description
of the structure and qualities of the physical mechanisms and
how they contribute to interesting, emergent gameplay. The
procedural techniques will leverage these structures in order
to generate interesting mechanics.

3. EMERGENCE AND PROGRESSION

An interesting challenge that stems from trying to generate
content for action-adventure games is that these games typ-
ically combine elements of games of progression and games
of emergence. These categories, originally proposed by Jes-
per Juul [14], are two alternative ways of creating game-
play. In games of progression, gameplay typically stems
from carefully designed levels that present the player with
a series of increasingly more difficult challenges. Creating
this type of games requires a lot of specialized content to be
created. Procedural content generation that aims at level
design has been successfully applied to structures of pro-
gression in games (for example in Diablo and Torchlight).
Action-adventure games use level design to structure the
gameplay experience in this way. At the same time, action-
adventure games also rely on emergent gameplay. Combat
mechanics, the frequent use and combination of special abil-
ities and power-ups are much closer to games of emergence.
In action-adventure games, players create personal strate-
gies and tactics to overcome particular obstacles. Action-
adventure games are often designed to facilitate this type of
exploration of the its mechanics.

Games of emergence rely on a fewer mechanics that gen-
erate a large possibility space. The term emergence origi-

nates from the science of complexity that studies complex,
dynamic systems including, but not restricted to, games.
Results from that field suggest that a number of structural
features of complex systems play an important role in the
creation of emergence. Stephen Wolfram [26] suggest that
multiple state machines, with simple rules to govern their
interaction can display surprisingly complex behavior. The
number of connections between the state machines, and the
activity of the state machines (how often they change their
state) are good indicators for emergent behavior. In another
study, Jochen Fromm [11] relates emergent behavior to the
existence of feedback loops within the system. Multiple feed-
back loops create more emergent behavior.

Feedback loops and their relation to game design has been
acknowledged by experienced game designers [15, 20, 1]. In
previous works that focus on emergent behavior in econ-
omy driven games (such as simulation, real-time strategy,
and board games) I also concluded that feedback loops in
the flow of resources through the game are vital to create
emergent gameplay [5, 7).

In order to generate mechanics for action-adventure games
successfully, the mechanics fit the structural qualities dic-
tated by emergence and progression in games. In this re-
spect lock and key mechanisms play an important role, as
lock and key mechanisms are vital for the games structure
of progression, and at the same time interact with emergent
physical properties of the game.

4. LOCK AND KEY MECHANISMS

Locks and keys mechanisms are a central feature of any
action-adventure game. Locks and keys are used to struc-
ture the players progress through a game. A typical ad-
venture game has actual keys that unlock doors, but also
includes many other items that function similarly. For ex-
ample, a special magic sword can act as a key when it is
required to defeat a particular enemy in order to proceed.
Designing interesting mechanisms for locks and keys is an
important aspect of designing adventure games. Successful
design strategies, found across many published games, often
resolve around integrating the items or power-ups that act
as the key into the physical simulation, or combat system.
These keys rarely function for the sole purpose of unlocking
a particular doorway; they double as weapons or allow the
player to move around the environment in new ways. For
example a bomb can be used against enemies but also to
clear blocked passages. In order to create a novel experience
for the player, designers are always on the lookout for new
and interesting ways to create this type of mechanism.

To this end, integration into the physics simulation is a ‘key
feature’. In general, the integration is best realized by de-
signing a system that rather maximizes the number of possi-
ble interactions between elements, not by introducing many
different (types of) entities. This allows designers to design
puzzles that require the player to combine different items
and/or moves.

Lock and key mechanisms already played an important role
in the Mission/Frame framework [9]. In particular locks and
keys mechanisms allow a designer to transform a linear set
of tasks in a nonlinear, branching structure (see figure 1).

Figure 1: Transformation in a mission structure al-
lowed by lock and key mechanisms.

Figure 2: The properties of a bow can be used to
unlock a door.

These branching structures lend themselves better to the
generation of game spaces. In this case the transformation
itself is realized through the execution of a transformation
graph grammar. The process of generating an entire level
can be broken down into a series of transformation each
described by different grammars. However, in this previ-
ous work the locks and keys remain abstract constructions,
I made no attempt to generate more interesting physical
mechanisms for them, or to give them additional purposes
in the game.

More detailed mechanics and multiple purposes can be gen-
erated by adding properties to the tasks in the mission dia-
gram that describe the lock and the key. Figure 2 illustrates
this, the properties are represented as hexagons that are con-
nected to the locks and keys respectively. In this case, the
diagram represents how a bow and arrow can function to
open a lock requires damage to be dealt to it at a distance.
This condition can later be realized by creating a door that
is activated by a switch that needs to be struck and place the
switch behind a barrier that cannot be traversed but that
can be shot over (such as a body of water). Figure 3 illus-
trates a space graph that fulfill these requirements. In this
figure the large circles represent distinct rooms or places in
the level while the black circles represent items or features
located in those places. Solid arrows indicate how the player
can move between places. The dotted arrow indicates that a
particular switch unlocks a door while a the solid arrow be-
tween the body of water and the switch indicates the switch
is ‘protected by the water’. Figure 4 represents the trans-
formation rules that could generate that construction.

Similar properties, such as causing fire damage, the ability
to grab distant items, or resisting fire, can be used to dis-
tinguish key items from one and another, but also to test
whether or not one item might unintentionally act as a key
for a lock designed for another item. For example, a sword
might be modeled as a key that has the damage property,

b+a: bow & arrows

e: entrance

g goal

sw: switch

w: body of water

Figure 3: A space graph that realizes a lock and key

mechanism for a bow.

rule: protect switch

rule: replace lock

>(®r0

rule: add switch

Figure 4: Transformational rules to generate the
lock.

while a bow as a key that has the damage and the distance
properties. This means that a lock that is opened when it
takes damage might be opened using both a sword or a bow.
In this case it makes more sense to generate a level where
the player needs to find the sword before she finds the bow.
Another interesting case, would be a lock designed for bow
to have a similar switch behind a field of lava. However
if that same level contained an item that would allow the
player to cross the lava safely the player can process with-
out needing to acquire the bow. In both cases it becomes
important that a transformation does not generate an un-
wanted situation. The most intuitive way to prevent the
system from generating these cases is to specify constraints
to identify them and using those constraints to eliminate
transformations that would generate them before they are
applied.

5. CONSTRAINTS

Constraints are not an integral part of using traditional
transformational grammars. The traditional approach would
require that the grammar is constructed in such a way that
the certain construction cannot be generated. In many cases
this is possible, but it is hard and requires a thorough under-
standing and experience with transformational grammars.
Mixed-initiative procedural content generation for games has
game designers as an important target group. I aim to create
automated tools to aid designers. For designers specifying a
set of constraints is far more intuitive that figuring out how
grammars can be designed that never generate unwanted
constructions. For that reason I propose to extend the im-
plementation of transformational grammars in Ludoscope
the with constraints.

In Ludoscope constraints are defined in a similar way as
rules or defined. A graph is created that illustrates the sit-
uation that should not occur. For example the constraint in
figure 5 indicates that a key for a specific door can never be
positioned behind the door it unlocks. In this case the star
above the edge indicates that there might be any number
of connections that between the lock and its key; the key
need not follow its lock directly. Constraints like these can

Figure 5: A constraint that would prevent the gen-
eration of a key that is placed behind its own lock.

1:L {2

propertiesMatch(2)

Figure 6: A constraint that would prevent the gen-
eration of a key that follows a lock with the same
properties.

be easily checked when a grammar is looking for applicable
rules. Ludoscope already compiles a list of all applicable
rules before selecting which rule to apply. If the application
of a rule results in a diagram that matches the constraint,
the rule is simply removed from that list. This makes the
procedure for selecting and applying rules slower as the pro-
cess intensity increases. However, fast implementations for
matching subgraphs exists and can be used in this case (see
Marlon Etheredge’s paper presented at the same workshop
[10]). In addition, applying rules and looking for constraints
while compiling a list of applicable rules has the advantage
of offering the opportunity to run more heuristics that might
affect the suitability of the rule. For example, it might check
the new graph’s size and adjust the likeliness of the rules se-
lection based on a specified target size.

Implemented in this way, the definition of constraints can
be easily extended to include useful short-cuts. For exam-
ple, the constraint in figure 6 uses a special command that
specifies that the constraint only applies when a match is
found where node 1 has at least the same set of properties
as node 2 has.

Constraints are specified with each grammar. In Ludoscope,
execution of a grammar corresponds with a single transfor-
mation in a multi-step generation process. This means that
after each step the generated content should be consistent
and coherent. It also adds the flexibility of later steps be-
ing able to break the constraints that where applicable for
earlier steps. Especially because in this model driven archi-
tecture for content generation later transformations tend to
be more and more specific to the desired game. For exam-
ple, while it is a good idea not to have keys behind their
locks in the earlier generic transformations that create the
a game structure, it makes equal sense to define a grammar
that allows keys to be placed behind locks, because in this
particular game that lock might initially be unlocked and
will be locked after the player passed through it.

6. PHYSICS DIAGRAMS

Adding properties to locks and keys and using constraints
can be leveraged to create a larger variety of locks and keys
for action-adventure style game. However, it does not guar-
antee that it also generates emergent physics interactions
for the game. To that end, we need a better understanding
of the structural qualities in game physics that gives rise to

emergence and a more direct way to model those qualities.

As was argued above, emergence can be attributed to struc-
tural qualities in the game design. Emergence depends on
many active and interrelated elements. For games’ internal
economies that consist of flows of resources produced and
consumed by different game elements, feedback structures
play an important role in the rise of emergent gameplay.
Feedback is generated when state changes in one element
generate changes in other elements and over time cause new
changes in the original element. As it turns out, a similar
perspective can be applied to the physics mechanics of a
game, although instead of looking for feedback loops in the
production and consumption of resources, we need to look
for feedback loops in the network of causal relations that
the physics allow. This was argued independently during
two recent talks at the game developers conference in 2012.
Game designer Randy Smith who talked about his recent
work on Waking Mars, addressed the importance of having
long chains of causal relations in a game [24]. For example,
in Walking Mars the player might throw seeds at patches of
fertile soils to make them sprout. The plants produce new
seeds that fall to the ground and might collide with other
entities in the game, including crab-like creatures that carry
the seeds away to eat them. However, the player might scare
the crabs causing them to drop the seeds, etc. Designer and
researcher Andy Nealen, who worked on the game Osmo-
sis, suggested to structure these chains into loops (thereby
creating infinitely long chains) in order to create complex
behavior with only a few features and game mechanics [16].

The perspective of relative simple and few mechanisms that
allow many interactions that leads to emergent physics in
games partly explains the success and elegance of the 2D
platform game. In these games a few simple interactions
(moving and jumping) create many possible interactions with
other elements in the game (jumping on platform, jumping
into platforms to reveal hidden items, jumping on enemies,
or walking into them). Often one interaction leads to an-
other interaction: landing on unstable platforms will col-
lapse the platform, which in turn might kill an enemy, and so
on. The simplest indication that these long chains of events,
and loops exists is by looking at the number of possible in-
teractions. Emergent physics stem from many interactions
between relatively few elements.

Networks of causal relations can easily be represented by
graphs, and therefore easily be generated using graph gram-
mars. All it requires is a graph language build to represent
these physical interactions. For Ludoscope I propose a graph
language that has three types of nodes to represent entities
(circular nodes), conditions (diamond shaped nodes) and ac-
tions (triangles). For example figure 7 represents a network
for the physics of simple platform game. In this case there
is an entity called a player that responds to four different
actions: it is accelerated by the gravity, move and jump
actions, while it bounces as a result of the support action.
There are several conditions in this diagram: the support
action is activated when the player collides with a platform
entity, the move action is only active when a certain key is
pressed, while the jump action is active only when the player
is supported and a certain key is pressed.

key pressed? support

\ / bounce

% = /\
supported? gravity

\A £

Jump move key pressed?

colliding? platform

A action

<> condition
O entity

Figure 7: Physical mechanics for a platform game.

The types of conditions required to represent the physics of
games is constrained. For most games conditions to check for
overlap or collision goes a long way to describe the physical
interactions between entities. Many other conditions can be
derived from the syntax of the diagram itself: a condition
that has an action and an entity as its input is met when
that action currently acts on that entity. Conditions that
represent player input form another, highly constrained set.

An important aspect this representation of physics mechan-
ics is that one entity might contain another entity; entities
can double as properties of other entities. All the actions
affecting the container entity automatically also affect its
contained entities. This allows for a flexible way of defining
physical mechanics for a game. For example, figure 8 de-
fines the mechanics for a sword (top-left) that simply spec-
ify that if a sword overlaps any other entity it will activate
the ‘damage’ action on that entity. It also defines a health
entity (top-right) that responds to two actions: ‘damage’
and ‘heal’; while it might also generate a ‘kill’ action on its
container. Now, if we create a simple ‘enemy’ entity and
have it contain a health entity, that becomes enemy can be
damaged and eventually be killed by the sword. At the same
time we can define a switch to respond to receiving damage
by activating an entity it is associated with (as indicated by
the dotted arrow), and a door that opens when activated
(also see figure 8).

Entities can be defined in isolation of other entities, as was
done in figure 8 or in a complete diagram of all physics (as
is more or less the case in figure 7). Defining entities in
isolation hinges on the implicit relations made possible by
actions. A sword will damage anything it overlaps, but only
those entities that define a reaction to the damage action,
or contain other entities that do so will respond to that
action. This allows us to shift between definitions and com-
plete physics networks relatively easily. Definitions can be
‘cut’ from a complete network by taking an entity and trace
its outputs and inputs back to the nearest actions and en-
tities, and all relations between them. Likewise a network
can be built from isolated definitions by connecting actions
of the same name.

The physics of a game will cause more dynamic emergent
behavior as the interactions increase and chains of causal
events grow in length. This can be achieved when the ac-
tions entities activate and respond to come from a limited
set that is shared amongst many entities. For example the
more entities respond to the damage action, the more op-

defines sword: defines health:

ey

.
1 sword b health ;
5 REWAS: :
' . damage !
; b fore ;
: overlap? ~ damage b heal hp == 0? kill !
defines enemy: defines switch:

e v e D e,
! enemy Co activate :
E destroys ' E !
; kills : ; ;
i health Do ;

deactivate

N\

-
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'

g

\
'

'

'

'

i

'

close '
f E '

'

'

'

'

'

'

'

'

'

'

activate door deactivate
AselTimer
activate timer timer == 0?
Figure 8: Physical mechanics for an action-

adventure (subset).

tions the player will have for using a sword. At the same
time, entities that both respond to and activate actions of-
fer more opportunities for chaining of events. For example,
right now the sword will only activate actions, while a door
only responds to actions, while switches, timers and health
entities both respond and activate. In general it is best to
generate or design entities in a way that they do both.

7. IMPLEMENTING THE PHYSICS

Generating definitions for game entities using physics dia-
grams using graph grammars is fairly easy. Implementing
or generating the associated behavior is more difficult. I
suggest that using a game engine following a component
based architecture is the best way to approach this challenge.
Component based game engines are increasingly popular. It
is an effective way of dealing with a wide variety of game ob-
ject that share different behaviors [18]. Component based
architectures are an alternative to inheritance based archi-
tectures that are less well suited to deal with sharing behav-
ior among many different types of game entities or objects
that follows the composite pattern from general software en-
gineering [12].

At the heart of a component based architecture are two
classes: components and composites.! Composites contain
components. However, as composites inherit from compo-
nent, they can also be contained by other composites (see
figure 9). This leads to a flexible nested architecture that
closely matches the physics diagrams presented above where
entities can be contained by other entities. In a component
based architecture game objects are not as much defined as

! Although a stricter implementation of the pattern would
have three classes: Component, Composite and Leaf, where
Component is an abstract class.

Component
+handleMessage() components

7

Composite

+handleMessage()

<® parent

Figure 9: UML for components and composites.

A B A B

----- O @

health

damage damage

Figure 10: Graph grammar rule to create a physical
interaction.

they are composed: they are created by assembling a number
of components that define their behavior and rarely define
their own behavior.

In a component based architecture individual components

do not communicate directly, instead they communicate through

a message system. Any component can send and receive ar-
bitrarily defined messages. In this case that functionality
is implemented through the handleMessage function. The
Composite class overrides the handleMessage function so
that it also passes all messages to its components. This
ties in nicely with the actions in the physics diagrams.

To generate physics for games a component based game en-
gine can be used in two different ways. First, game objects
can be composed from a pre-designed set of components that
are specific for the game. If in this case you want an entity
A to interact with another entity B, you simple add compo-
nents to entity B that respond to actions activated by entity
A, or vice-versa. Transformational grammars can be used
for this. Figure 10 illustrates this by specifying that a rela-
tionship between an entity that causes damage and another
entity can be created by adding a health component (includ-
ing all behaviors as defined in figure 8) to the latter. This
rule uses a dashed arrow to indicate an unspecified relation-
ship. Note that this rule also forces entity B to implement
a response to the kill action.

A second strategy would be to generate definitions for en-
tities or components using a generative grammar and then
to generate software code that implements that behavior.
For example the health entity in figure 8 could be easily
translated to the following code:

public class Health implements Component

{

private hp:int = 3;

@0verride
public void handleMessage (message:String)
{

if (message.equals("damage")) hp--;

if (message.equals("heal")) hp++;

super .handleMessage (message) ;

}

@0verride
public void update() //called every frame
{
if (hp==0) parent.handleMessage("kill");
super .update() ;
}
}

Using this strategy it is possible to generate a physics net-
work first and extract components from it. This way a net-
work can be generated with a desired number of interactions
and feedback loops.

8. DISCUSSION

Ludoscope was set up to support a model driven approach
to procedural content generation [8]. The physics diagrams
and extension of mission graphs with properties for locks
and keys must be seen within this light. By designing graph
languages specific to these sub-domains of game design, it
becomes possible to define steps in the design process as
graph transformations within each language. In addition,
graph transformations can be used to translate between the
different models. For example, generative and transforma-
tion grammars can be used to generate a physics diagram,
additional grammars can then be used to find mission struc-
tures that are suitable for those physics. The design process
is not restricted to a particular order. Physics might be gen-
erated before a mission is created, or the other way round.
The properties for locks and keys are instrumental in this
respect, they provide hooks in the generation process for
physics or they provide a way of taking into account rele-
vant constraints while generating a mission.

Ludoscope was also set up to support a mixed initiative ap-
proach to procedural content generation where a designer
and the computer take turns in the generation process. In
this case, designers can specify physics diagrams by hand,
and use the computer to generate levels to match the physics.
Extending the mixed initiative approach to game physics
could lead to very fast prototyping tools where the physics
diagrams provide designers with an intuitive interface onto
that part of the design.

Physics diagrams as presented in this paper can also be used
in fully automatic game generation tools such as the Game-
O-Matic which was recently presented at the Game Devel-
opers Conference by Ian Bogost [3]. In the Game-O-Matic
the designer specifies a content map containing entities and
relationship between them expressed as verbs. Using graph
transformations these could be used to generate physics dia-
grams where verbs can be translated in various ways. Using
constraints and heuristics the tool could quickly search the

possible implementations and gravitate towards those that
have the most interrelations and feedback loops.

Currently, the research is in its early stages.

Physics di-

agrams can be represented by Ludoscope and grammars
can be defined to specify transformations. At the moment
of writing, there is no prototype that actually implements
physics networks into a component architecture. Neverthe-
less, prototype is under development and its preliminary re-
sults, combined with my experience with procedural content
generation prototypes, convince me that this approach will
lead to interesting results in the near future.

[9]

[10]

REFERENCES

E. Adams and A. Rollings. Fundamentals of Game
Design. Pearson Education, Inc., Upper Saddle River,
NJ, 2007.

C. Ashmore and M. Nietsche. The Quest in a
Generated World. In Situated Play: Proceedings of the
2007 Digital Games Research Association Conference,
Tokyo Japan, September 2007, pages 503-509, 2007.
I. Bogost. Making Games as Fast as You Can Think of
Them. Presentation at the Game Developers
Conference, San Francisco CA, March 2012, 2012.

A. Brown. An introduction to Model Driven
Architecture. 2004.

J. Dormans. Machinations: Elemental Feedback
Structures for Game Design. In Proceedings of the
GAMEON-NA Conference, Atlanta GA, August 2009,
pages 33-40, 2009.

J. Dormans. Adventures in Level Design: Generating
Missions and Spaces for Action Adventure Games. In
Proceedings of the Foundations of Digital Games
Conference Monterey CA, June 2010, 2010.

J. Dormans. Integrating Emergence and Progression.
In Think Design Play: Proceedings of the 2011 Digital
Games Research Association Conference, Hilversum
the Netherlands, September 2011, 2011.

J. Dormans. Level Design as Model Transformation:
A Strategy for Automated Content Generation. In
Proceedings of the Foundations of Digital Games
Conference, Bordeaux France, June 2011, 2011.

J. Dormans. Engineering Emergence: Applied Theory
for Game Design. PhD thesis, University of
Amsterdam, 2012.

M. Etheredge. Fast exact graph matching using
adjacency matrices. Paper submitted to the
Procedural Content workshop at Foundations of
Digital Games Conference, 2012.

J. Fromm. Types and Forms of Emergence. 2005.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable
Object-Oriented Software. Addison Wesley, Boston,
MA, 1995.

R. Heckel. Graph Transformation in a Nutshell.
Electronic Notes in Theoretical Computer Science 148,
pages 187-198, 2006.

J. Juul. The Open and the Closed: Games of
Emergence and Games of Progression. In F. Mayré,
editor, Proceedings of Computer Games and Digital
Cultures Conference, Tampere Finland, June 2002,
pages 323-329, 2002.

(15]

(16]

(17]

(18]

(19]

20]

(21]

(22]

23]

(24]

(25]

(26]

M. LeBlanc. Formal Design Tools: Feedback Systems
and the Dramatic Structure of Completion.
Presentation at the Game Developers Conference, San
Jose CA, March 1999, 1999.

A. Nealen. Minimal vs Elaborate, Simple vs Complex
and the Space Between. Presentation at the Game
Developers Conference, San Francisco CA, March
2012, 2012.

M. J. Nelson and M. Mateas. Towards Automated
Game Design. In Proceedings of AI*IA 2007: Artificial
Intelligence and Human-Oriented Computing, Rome
Ttaly, September 2007, pages 626—637, 2007.

R. Nystrom. Game programminf patterns:
Component. online article, 2009.

J. Rekers and A. Schiirr. A Graph Grammar Approach
to Graphical Parsing. In Proceedings of the 11th
International IEEE Symposium on Visual Languages,
Darmstadt Germany, May 1995, pages 195202, 1995.
K. Salen and E. Zimmerman. Rules of Play: Game
Design Fundamentals. The MIT Press, Cambridge,
MA, 2004.

R. Smelik, T. Turenel, K. J. de Kraker, and

R. Bidarra. Integrating procedural generation and
manual editing of virtual worlds. In Proceedings of the
Foundations of Digital Games Conference Monterey
CA, June 2010, 2010.

A. M. Smith and M. Mateas. Variations forever:
Flexibly generating rulesets from a sculptable design
space of mini-games. In Proceedings of the IEEE
Conference on Computational Intelligence and Games
(CIG), 2010.

G. Smith, J. Whitehead, and M. Mateas. Tanagra: A
Mixed-Initiative Level Design Tool. In Proceedings of
the Foundations of Digital Games Conference,
Monterey CA, June 2010, pages 209-216, 2010.

R. Smith. Landing On Mars: Our Rocky Path to
Inventinf New Gameplay. Presentation at the Game
Developers Conference, San Francisco CA, March
2012, 2012.

J. Togelius, G. N. Yannakakis, K. O. Stanley, and

C. Browne. Search-based procedural content
generation: A taxonomy and survey. I[EEE
Transactions on Computational Intelligence and Al in
Games, 2011.

S. Wolfram. A New Kind of Science. Wolfram Media
Inc., Champaign, IL, 2002.

