
miWFC - Designer empowerment through mixed-initiative Wave
Function Collapse

Thijmen S. L. Langendam

thijmenlangendam@gmail.com

Delft University of Technology

Delft, The Netherlands

Rafael Bidarra

R.Bidarra@tudelft.nl

Delft University of Technology

Delft, The Netherlands

ABSTRACT
Wave Function Collapse (WFC) is a powerful generative algorithm,

able to create locally-similar output based on a single example in-

put. One of the inherent limitations of the original WFC is that it

often requires users to understand its inner workings, and possi-

bly make their own ad-hoc mods, to achieve satisfactory results.

Besides distracting from your creative task, this strongly reduces

the algorithm’s effective usefulness to a small group of technical

users. We propose miWFC, a novel mixed-initiative approach to

WFC aimed at overcoming these drawbacks. Its main focus is on

providing intuitive control to its users, in a way that matches their

usual creative workflow. Among its main features, this approach

provides (i) interactive navigation through design history, including

controlled backtracking, (ii) precise manual editing of the output

for direct expression of design intent, and (iii) interactive manipu-

lation of tile weights, to tweak the global appearance of the output.

We evaluated a prototype implementation of our approach among

game artists and other creative professionals, and concluded that

its features were largely considered useful and supportive of their

creative work.

KEYWORDS
procedural content generation, mixed-initiative, human-computer

interaction, interaction design, wave function collapse, level gener-

ation, texture synthesis, constraint solving

1 INTRODUCTION
Most game level designers and artists do hard and unstructured

creative work. Procedural Content Generation (PCG) methods have

often been proposed as a powerful tool to assist them [15]. How-

ever, to be effectively helpful, such means have to empower their

artistic users, not only respecting but amplifying their creative

freedom [16].

Mixed-initiative approaches propose a type of human-computer

interaction in which the computer and the human user alterna-

tively take steps towards the desired goal. Mixed-initiative PCG

systems have long been proposed as promising tools for a variety

of purposes in game development, from game level [18, 9, 2, 23]

to complete game world generation [17, 5, 12]. However, the chal-

lenges of combining PCG with manual editing of its output have

also been pointed out [14].

Wave Function Collapse (WFC) is a PCG method that has re-

cently gained widespread popularity [4, 7]. The original WFC partly

resembles the model synthesis work of Paul Merrell [10], which

was initially geared towards procedurally generating complex 3D

models based on one input model. WFC simplified and facilitated

its use and application, particularly for image synthesis purposes.

However, this comes at the cost of providing little control on the

generative direction followed by the algorithm.

Our work addresses the research question: what does it take to
convert WFC into a mixed-initiative PCG method? More specifically,

we explore how to adapt the WFC algorithm to support and inte-

grate a number of interactive features that more appropriately suit

the usual creative workflow of game level designers and artists. In

this paper, we propose several of these features, discuss how they

work, and present some results of the evaluation of their implemen-

tation in our miWFC prototype application.

2 RELATEDWORK
We briefly discuss the original WFC algorithm, its strengths and

weaknesses, some of its extensions proposed so far, as well as other

related research work.

2.1 Basic Wave Function Collapse
The original WFC [4] generates bitmaps that are locally similar to

an input bitmap. This means that the output only contains patterns

of pixels that are present in the input.

To generalize the WFC algorithm, one has to abstract above

the particular notion of bitmap. For this, it is convenient to first

introduce a few notions as follows:

• a tile is a pattern with a distinct combination of several ele-

mentary ‘space subdivision units’ (e.g., pixels, voxels, letters,

etc.); it is identified and extracted from the algorithm input;

• a cell is the basic building block of the algorithm output

space; initially, any tile can potentially be assigned to each

cell, hence the (quite remote) quantum analogy of WFC: ev-

ery cell ‘simultaneously contains all possible states’ (i.e., po-

tential tiles) until either you ‘collapse’ it (i.e., assign it one

concrete tile) or its neighbour cells constrain its allowed

‘states’.

The generic WFC algorithm is presented in Algorithm 1. It ini-

tially analyses its input, detecting and extracting from it both a

number of patterns (the available tiles) and identifying the con-

straints (e.g., existing adjacencies) between them (1). Subsequently,

the algorithmwill iteratively select where to continue collapsing (3),

how to collapse (4), and propagate that collapse to the neighbour

cells (5). Eventually, the algorithm stops (6) when either all cells

have been collapsed or some conflict took place. This simple and

generalized version of WFC will be used throughout the paper:

Stated in this way, WFC’s simplicity makes it quite attractive for

being applied to generative problems in many domains. Among its

strongest advantages, one can point out:



1 initialize algorithm (building tile and constraint tables)

2 repeat
3 choose next cell to collapse

4 choose which tile to collapse it to

5 propagate

6 until all cells have collapsed or a conflict occurs;

Algorithm 1: Generic WFC algorithm

(1) The algorithm requires a single input, which makes it faster

than machine learning approaches that require substantial

training data as well as training time.

(2) The output can often be generated in milliseconds, giving

users a quick feedback.

(3) The iterative nature of the algorithm allows for interception

or manual pause at any stage.

Unfortunately, WFC has also a number of drawbacks, which

strongly hinder artists in their creative work. Among them, one

can point out:

(1) Notions like ‘collapsing a cell’, ‘entropy-based selection’ and

‘constraint propagation’ are non-trivial, and require some

understanding to grasp why some output is as it is.

(2) WFC originally lacks an undo facility, which in turn excludes

a trial and error approach, frequently taken by artists. Like-

wise, WFC is unable to backtrack, a much-needed option for

restarting, for example, after a conflict occurs, or some of

the output is not conforming to the user’s design goal.

(3) Propagation is not always logical: whilst the concept is easy
to understand, it all happens behind the scenes, which may

be often confusing or startling.

(4) Tile selection is not easily controllable, because after picking
a cell to collapse, the tile choice is based on fixed weights,

extracted from the algorithm input.

2.2 WFC variants and extensions
Karth and Smith [7] make a good analysis of the WFC algorithm,

placing it in continuity with previous methods: “Both traditional

texture synthesis and Markov chain approaches are primarily data-

driven and thus accessible to non-programmers.” One can there-

fore wonder: if these two techniques were made accessible to non-

programmers, how could that be done with regard to WFC?

The same authors also discussed how to make the algorithm

faster, more efficient and complete [6]. Regarding completeness,

one of the answers is the inclusion of backtracking, as it helps cover

all possible arrangements, eventually leading to find a solution, if

it exists.

Kim and Kang further explore the possibilities of the algorithm

by extending it into a graph-based domain, moving away from the

simple grid layout [8]. The graph-based domain allows for a broader

definition of combination rules, and ultimately to the generation

of a much larger variety of content (from maps to Sudoku levels).

However, this comes at the cost of a much less intuitive interaction.

To address more flexibility in input usage, Sandhu et al. [13]

propose dynamically adjusting tile weights during algorithm execu-

tion, which has the potential to lead to more satisfactory output, at

Figure 1: Example of manual drawing before running the
WFC algorithm. (Input image: Castle [4])

least if properly controllable. Their work has partly inspired some

of our tile manipulation techniques, described in Section 6.

Cheng et al. [3] implemented three mechanisms intoWFC: global

constraints, multi-layer generation and distance constraints, to pro-

vide a base for non-local constraints, inspired on work by Sandhu

et al. [13]. These extensions were added for improved designer con-

trol, better playability, and increased similarity to human-designed

levels.

Newgas created a library and tool, Tessera [11], for constraint-
based procedural generation. It contains a ‘painting tool’ for draw-

ing tile adjacencies (rather than the algorithm extracting them from

the input), and a number of extensions such as working with pre-

placed tiles, tiles spanning multiple cells, more grid types and path

graphing constraints. Through these additions, they aim to improve

algorithm configurability. In addition, he has made available his

WFC C# Library [22], extending the original algorithm with several

additional features, including backtracking and non-grid layouts.

Our miWFC prototype builds upon this library.

Two games developed by Oskar Stålberg [19] are good exam-

ples of online PCG through an ad-hoc version of WFC: Bad North
[20] and Townscaper [21]. Bad North customizes the basic WFC

algorithm with an extra constraint, to make sure that agents in the

game are able to have a navigable path across the levels.

3 MIXED-INITIATIVE CONTRIBUTION
As mentioned before, most creative professionals are not served

by the lack of control offered by current WFC algorithm variants.

Our work aims at converting WFC into a powerful mixed-initiative

creativity tool that makes it much more accessible and usable to a

wide, non-technical public. In particular, we address the algorithm

drawbacks pointed out above, and propose solutions to them, so

that WFC can effectively support artists in freely expressing their

intent, and exploring the design space. Naturally, this should be

done without compromising the algorithm strengths.

A typical use case might consist of an artist initiating the output

by manually creating a specific area of interest at a desired location

(something the algorithm would typically not produce on its own),

2



and then utilize the algorithm to fill in the remaining area (see

Figure 1). Such a facility is a good example of assisting the user in

steering the output in the desired direction. Allowing such manual

control at any stage promotes the kind of designer empowerment

that drives our research contribution.

4 HISTORY NAVIGATION
In Algorithm 1, selecting a cell (step 3), collapsing it to a given tile

(step 4), and the subsequent propagation (step 5), are determinis-

tic processes: these steps always result in the same state, and are

therefore revertible. Additionally, the iterative nature of WFC pro-

vides a clear and discrete measure for controlled stepping through

the process, both in its basic forward (generative) direction and in

its backward (undo) direction, when backtracking. By introducing

backtracking and manual stepping in the WFC algorithm, and by

conveniently bringing these features to an intuitive interface, we al-

low for more and finer control over the generative process. Because

these features relate to the timeline dimension of the algorithm, we

call them History navigation.
History navigation provides (i) controls to perform an arbitrary

number of steps (i.e., algorithm iterations) back and forth, (ii) the

ability to ‘save’ the current progress as a marker to revert to, and (iii)

a timeline to indicate progress and visualize these saved markers.

These elements work together to address and solve the absence of

an undo facility in WFC (Section 2.1). As a result, the algorithm’s

progress becomes more visible and its control, more accurate and

intuitive.

Prototype implementation
Figure 2 shows the history navigation interface of ourmiWFC proto-

type, featuring a variety of controls, including a play/pause button

to control the algorithm, forward/rewind buttons to perform a set

amount of steps and, underneath, two progress control buttons to

‘save’ (place a marker) and ‘load’ (revert to the previous marker). In

addition, two sliders allow you to set (i) the amount of steps to per-

form before refreshing the display, and (ii) the wait time between

steps, effective controlling the speed of the animation. Below the

output, a timeline is provided, roughly indicating the fraction of

output already generated, by means of a green marker. Above the

timeline, the blue markers indicate the ‘save’ points set so far.

5 DIRECT MANIPULATION
By design, the original WFC algorithm is fully autonomous, choos-

ing the next cell to continue progression through a ‘lowest-entropy’

heuristic. This boils down to picking the cell with the least amount

of potential states, with the goal of minimizing the chances of caus-

ing conflicts. The algorithm then chooses, from among the tiles still

allowed for that cell, which tile to collapse it to. For this, it uses the

tile weights, once computed from the input.

Usually, the chosen cell is found in the vicinity of other collapsed

cells, hence the ‘flood propagation’ appearance of aWFC animation.

However, there is nothing preventing us from manually indicating

where (i.e., at which cell) we would like to proceed nor, for that

matter, how we wish to ’collapse’ there (i.e., to which of its allowed

tiles).

Figure 2: The history navigation interface of ourmiWFC pro-
totype. (Input image: 3Bricks [4])

We designed two interactive methods to directly manipulate

this spatial progression: (1) a pencil tool to collapse a given cell to

a desired tile, and (2) a brush tool to select a desired area of the

output, which is meant to be either fully reset (i.e., cleared up) or

preserved from a total output reset.

Both methods are meant to operate directly on the output cells.

Therefore, it is possible, and very convenient, to provide a visual

insight that previews the outcome of their application. This is pos-

sible because the WFC algorithm always keeps track of all allowed

states for each cell. Although this information is normally hidden,

one can display it real-time, on demand, for example when hovering

over a cell. Visualizing all potential tiles for a cell is a very useful

insight, and it can even help understand the algorithm’s mechanism

of tile selection.

5.1 Pencil tool: direct manual collapsing
Manual cell selection for collapsing allows one to steer the output

in the desired direction, as illustrated in Figure 1. The pencil tool

materializes this idea: by ‘painting’ with a given tile on a chosen

cell, it overrules, in Algorithm 1, the automated picking of a cell

(step 3) and of a tile for it (step 4). Furthermore, whilst hovering over

the output, it allows for an overlaid preview of the propagated con-

sequences of that collapsing. This can prevent subsequent surprise

or misunderstanding on why other cells collapse as a consequence

of the user’s ‘paint’ action.

Figure 3 gives an example of the preview representation when

hovering: it shows what will additionally collapse, and where, if

the cell being hovered were to collapse to yellow.

5.2 Brush tool: direct manual un-collapsing
The second method provides the ability to brush over the output,

selecting a desired area to be either reset (i.e., fully ‘un-collapse’ its

3



cells) or preserved from global resetting. In this way, the user can

more accurately choose what to keep from a given output situation.

For example, in Figure 4, one can clear up a few small areas, e.g., for

further manual tweaking (top), or simply clear up the whole output

except the desired area selected (bottom). In either case, brushed

masks just indicate the user intent: the actual reset should only

take place upon explicit application of the masks.

Indicating an area to be reset does not necessarily guarantee

that all its cells will end up fully reset. That happens, in particular,

to reset cells neighbouring cells that are to be preserved, because,

after applying the mask, re-propagation may collapse (or at least

constrain) some of them. Figure 4 illustrates this for both brushing

uses.

5.3 User-defined templates
In addition to the Pencil and Brush tools, we designed a third

method for direct manipulation of the output. It consists of the

definition of tile templates from a region of the output, and their

subsequent (re)use (possibly multiple, by ‘stamping’ that template

at desired places in the output. The use of templates allows for

improved workflow on larger outputs, as well as for fast creation

of output with a specific region of interest. Where in Figure 1 the

castle was drawn onto the output, the user could now select this

castle (including moat), save it as a template and stamp it onto the

output wherever desired, even providing this ability across distinct

output generations. Another example of template use is given in

Figure 5.

With these direct manipulation features, the designer can especially

concentrate on areas of interest of the output, with more control to

manually tweak local details while leaving the rest to the algorithm.

Prototype implementation
In the miWFC prototype, direct manipulation was implemented

using a separate panel; see Figure 6. On the left hand, all tools

can be selected: the pencil tool (shown in red), the brush tool, and

below those, two user-defined template tools, one for their creation

and one for their placement. The pencil tool is accompanied by a

drop-down menu to select with which tile to paint. When painting,

Figure 3: Semi-transparent overlay previewing the results of
collapsing to a yellow tile at the cursor. (Input image: Village
[4])

Figure 4: Manually ‘un-collapsing’ cells: (top) using the brush
to reset areas; (bottom) using the brush to lock and preserve
an area. (Input image: LessRooms [4])

all tiles available at the hovered cell are shown on the right hand,

as shown in Figure 6, with the tile currently selected for painting

highlighted in green for clarity. In addition, the panel also provides

the ability to place (and revert to) markers, further facilitating quick

iterations and experiments.

The brush tool is accompanied by a button to apply the mask(s)

to the output, one to reset the mask, and a slider for the brush size

(Figure 7a).

The template creation tool basically works as a one-cell-wide

brush tool, to select the desired template cells. The template place-

ment tool has a drop-down to select the desired template, one button

for deleting the selected template, and one for rotating it prior to

placement (Figure 7b).

6 TILE MANIPULATION
Among other tasks, the initialization in step 1 of the WFC Algo-

rithm 1, identifies all tiles in the input, and calculates their weights,

according to the relative frequency they occur there. Furthermore,

depending on the desired settings, identified tiles may also be con-

sidered under rotational or mirroring transformations. Although

this may not always be desirable, it is often useful for certain tiles

representing, for example, a road corner or a chair, as their multiple

orientation might be desirable.

For each cell in the output, the WFC Algorithm 1 keeps track of

which tiles are still available. At each iteration, the tile selection

mechanism (step 4) selects one tile at random, using the tile weights

Figure 5: The template (left), output after placing the tem-
plate multiple times (middle), and the final output after the
algorithm filled the blanks (right). (Input image: FloorPlan
[4])

4



Figure 6: The direct manipulation panel of themiWFC pro-
totype. (Input image: 3Bricks [4])

calculated at initialization, to regulate the chance of being selected:

the more a tile occurs in the input, the higher its weight, and the

higher the chance it will appear in the output.

6.1 Weight manipulation
Tile selection is, ultimately, determined by weights and, as long

as these are kept fixed, the output will mostly resemble the input.

However, by providing the ability to manipulate those weights, one

can enable a much larger variety of output, still inspired in the input,

but exhibiting very disparate ratios among their tile occurrences.

The fact that weights are simple numeric values, provides users

a simple and intuitive control over the relative tile frequencies

desired in the output, a larger value making the tile appear more

frequently in the output. This can have a significant impact on the

algorithm’s output, as illustrated in the example of Figure 8, which

uses five different tiles: Crossed, Straight, Empty, T-junction and

Corner.

However, it might also happen that a user wishes tile weights

to dynamically vary over the output space. This boils down to

indicating which weight value to use for each tile, at each cell,

during step 4 of Algorithm 1. A convenient way of doing this is

to graphically ‘brush a heatmap’ over the output, expressing how

these weight values should spatially vary. This allows indicating,

for example, a smooth gradient for a given tile weight (see Figure

(a) Brushing tools (b) Template placement tools

Figure 7: Direct manipulation tool sub-menus.

Figure 8: Weight manipulation for the Knots tile set (top) [4].
Example outputs for (left) equal weights for each tile, and
(right) increased weight for the empty tile.

(a) The empty tile gets gradually more used, from left to right

(b) The empty tile dominates in the desired spots

Figure 9: Spatially variable weightmanipulation by inputting
different heatmaps. (Input image: Knots [4])

9(a)), or some zones of exceptional high frequency for it (see Figure

9(b)).

6.2 Transformation manipulation
Toggling tile transformations, whether rotational or mirroring, al-

lows for additional control over the appearance of the output. There

is a maximum of eight such transformations possible for a single tile.

5



However, not every tile is affected by every type of transformation,

so often some tiles will yield fewer variants. For example, the Empty

tile in Figure 8 is affected by none of these transformations, while

the T-junction and Straight tiles are only invariant to mirroring.

While not always as obvious as the tile weight manipulation (in

Figure 8), toggling these transformations per tile can also have a

considerable impact on the output, as illustrated in Figure 10. On

the left hand, the Straight tile has rotations disabled, so the output

can exhibit no long vertical pipes; on the right hand, instead, it is

the Corner tile that has all transformations disabled: as a result, only

one corner tile is available instead of all four, effectively lowering

its ratio relative to the other tiles.

6.3 Pattern exclusion
In the original WFC algorithm, all tiles initially extracted from the

input image are unconditionally taken into account. Yet, allowing

the user to exclude individual tiles from the available pool can

largely expand the expressive power of WFC, even though it means

that the output thus generated will not fully comply to the initial

‘input specifications’. This control allows users to perform more

creative experiments, based on the same input image.

Experience tells that it is hard to create a good and clean input for

WFC in one go. Therefore, iteratively excluding a tile and assessing

how the output looks like is a very effective and powerful method

of fine-tuning a good input texture. By definition, the excluded

tile(s) will not be found in the output. So this output can be saved,

as a customized or improved variant, for further reuse as a future

input for the algorithm.

Prototype implementation
We implemented these features in our miWFC prototype through

an interactive panel, in which a number of settings can be found

for each tile identified in the input, see Figure 11.

For each tile, its large bold weight is depicted on the bottom left.

This value can be tweaked using the plus and minus to the right of

the tile. Through modifier keys, larger increments can be used (Ctrl:

±10, Shift: ±50). Finally, for each tile, two buttons allow toggling the

inclusion of tile rotations (top left) and of tile flipping (bottom left)

transformations. These buttons are not available for tiles unaffected

by each type of transformation. When transformations are turned

Figure 10: Transformation manipulation for the Knots tile
set [4]. Example outputs for disallowing transformations
(left) on the Straight tile, and (right) on the Corner tile.

Figure 11: Tile manipulation panel of the miWFC prototype.
(Input image: FloorPlan [4])

Figure 12: Spatially variable weights editor panel of themi-
WFC prototype. (Input image: Castle [4])

off, the grey buttons to the right help set the only position allowed

for the tile in the output.

Editing spatially variable tile weights can be done in a separate

panel (Figure 12). After choosing the desired tile, the user can freely

‘brush’ weight values as an overlay on the current output. Other

options include: setting the desired weight value from a colour-

coded scale, setting the brush radius, toggling between soft- and

hard-edged brush, as well as exporting/importing already made

heatmaps.

7 EVALUATION
So far, we have evaluated the intuitiveness of our approach, imple-

mented in the miWFC prototype system. For this, we approached

artists and designers from game development studios and online

creative platforms. Participants were asked a set of tasks over the

course of three user tests. These tests were completed by a total

6



of 45 user study participants, and provided predominantly posi-

tive feedback. For verification, participants uploaded their created

output, accompanied by a caption motivating their design.

7.1 History navigation evaluation
Our first evaluation topic focused on the navigational controls

ofmiWFC, shown in the panel of Figure 2. We asked participants to

“Create a part of a plausible city map, by controlling the steps of the
generator (hence and forth) until you are satisfied with the result.”.
The majority rated the miWFC history navigation features quite

positively (Figure 13 (left)). Participants were particularly enthusiast

about the use of history navigation markers on the timeline (shown

in Figure 2), and gave it a quite positive grade (Figure 13 (right)).

A final ‘sandbox’ task was included to optionally explore any

miWFC features without constraints. Albeit optional, only a single

participant did not take it, a good sign of the interest sparked among

users. In general, the miWFC prototype was very well received by

the participants, who gave valuable feedback, and expressed interest

in participating in subsequent test sessions.

7.2 Direct manipulation evaluation
This evaluation was centred around the direct manipulation meth-

ods of miWFC, shown in the panel of Figure 6, which are most

notably based on the painting and brushing mechanisms. To en-

courage exploration and creativity, participants were given large

freedom. The tasks regarded the creation of a city layout using

direct manipulation (given input image ColoredCity [4]). Overall,

these tasks yielded mostly positive grades (Figure 14).

Figure 13: Scores on history navigation

Figure 14: How intuitive did you find the painting editor?

7.3 Tile manipulation evaluation
Our third evaluation focused on four distinct types of tile manipu-

lation provided by miWFC. The tasks regarded altering tile weights
both statically and dynamically (Figure 15 (left)), tile exclusion

(Figure 15 (right)) and tile transformation manipulation (Figure

16). The effect of tweaking tile weights was quickly apparent to all

participants, who went on to experiment with their fine control.

Overall, albeit intricate, tile manipulation tools were considered

intuitive, with mostly positive results.

8 CONCLUSION
Wave Function Collapse (WFC) is a powerful and promising PCG

algorithm, but it lacks interactive features and intuitive control,

indispensable for the work of most creative professionals. In this

paper, we presented a novel approach that converts WFC into a

powerful mixed-initiative PCG method.

This approach, properly called miWFC, provides abundant in-
teractive features and intuitive control mechanisms for artists and

designers, to effectively assist them in their creative work. Among

other features, history navigation explores the iterative nature of

the WFC algorithm, and the animation of its ‘flood progression’, to

promote trial-and-error experimentation over a timeline, by means

of an intuitive undo mechanism. Direct output manipulation over-

rules, whenever desired, the automatic WFC cell and tile selection

steps, replacing them by the explicit user selection, and allowing

Figure 15: Scores on dynamic weights & pattern exclusion

Figure 16: Scores on tile transformation manipulation

7



for an effective steering of the content generation towards the ac-

tual design intent. Tile manipulation permits overruling both the

weights and the orientations of the tiles identified on the algorithm

input. In addition, tile weights can be interactively made to vary

throughout the output space, further supporting the expression of

a designer’s vision. This, in turn, provides users with a fine-grained

method for tweaking the global appearance of the output, steering

it away from the input whenever desired, in a controlled manner.

All these features were implemented in our prototype system mi-
WFC, and validated through user tests performed among the end

user community, who considered them rather intuitive and useful

to express their creative intent.

We believe various other WFC interactive features can be de-

signed, aimed at supporting the creative expression of artists and

designers, and empowering them to configure and explore a given

generative space. Like in the present work, most likely, an impor-

tant challenge ahead lies in the design of interactive techniques to

encapsulate the inherent complexity of other current WFC exten-

sions. Among the latter, one can include the ‘multiple input images’

introduced by Karth and Smith [6], extracting patterns from the

fusion of “positive” input(s), and excluding undesired patterns from

“negative” input(s). Other challenging WFC extensions that would

deserve attention are the (re)definition of tile adjacency constraints,

the effective definition and use of 3D tiles [11, 1], and the WFC

generalization to graph-based domains [8].

The miWFC prototype developed in this research project can be

downloaded at its repository
1
, for anyone to experiment with. As

an open-source project, its source code is available under the usual

conditions, for others to see, modify or perform further develop-

ments.

REFERENCES
[1] Levi van Aanholt and Rafael Bidarra. 2020. Declarative procedural generation

of architecture with semantic architectural profiles. In Proceedings of CoG 2020
- IEEE Conference on Games. IEEE.

[2] Alberto Alvarez, Steve Dahlskog, Jose Font, Johan Holmberg, Chelsi Nolasco,

and Axel Österman. 2018. Fostering creativity in the mixed-initiative evolu-

tionary dungeon designer. In Proceedings of the 13th International Conference
on the Foundations of Digital Games (FDG ’18) Article 50. Association for

Computing Machinery, Malmö, Sweden, 8 pages. isbn: 9781450365710. doi:

10.1145/3235765.3235815.

[3] Darui Cheng, Honglei Han, and Guangzheng Fei. 2020. Automatic generation

of game levels based on controllable wave function collapse algorithm. In

International Conference on Entertainment Computing. Springer, 37–50.
[4] [SW] Maxim Gumin, Wave Function Collapse Algorithm version 1.0, Sept. 2016.

url: https://github.com/mxgmn/WaveFunctionCollapse.

[5] Daniël Karavolos, Anders Bouwer, and Rafael Bidarra. 2015. Mixed-initiative

design of game levels: integrating mission and space into level generation. In

Proceedings of 10th the International Conference on the Foundations of Digital
Games.

[6] Isaac Karth and Adam Smith. 2021. WaveFunctionCollapse: content generation

via constraint solving and machine learning. IEEE Transactions on Games, PP,
(May 2021), 1–1. doi: 10.1109/TG.2021.3076368.

[7] Isaac Karth and Adam M. Smith. 2017. Wavefunctioncollapse is constraint

solving in the wild. In Proceedings of the 12th International Conference on the
Foundations of Digital Games (FDG ’17) Article 68. Association for Computing

Machinery, Hyannis, Massachusetts, 10 pages. isbn: 9781450353199. doi: 10.11

45/3102071.3110566.

[8] Hwanhee Kim, Seongtaek Lee, Hyundong Lee, Teasung Hahn, and Shinjin

Kang. 2019. Automatic generation of game content using a graph-based wave

function collapse algorithm. In (Aug. 2019), 1–4. doi: 10.1109/CIG.2019.8848019.

[9] Antonios Liapis, Georgios N. Yannakakis, and Julian Togelius. 2013. Sentient

sketchbook: computer-aided game level authoring. In Proceedings of the 8th
Conference on the Foundations of Digital Games, 213–220.

1
https://github.com/ThijmenL98/miWFC

[10] Paul Merrell and Dinesh Manocha. 2010. Model synthesis: a general procedural

modeling algorithm. IEEE Transactions on Visualization and Computer Graphics,
17, 6, 715–728.

[11] Adam Newgas. 2021. Tessera: a practical system for extended wavefunctioncol-

lapse. In The 16th International Conference on the Foundations of Digital Games
(FDG) 2021, 1–7.

[12] Mijael R Bueno Perez, Elmar Eisemann, and Rafael Bidarra. 2021. A synset-

based recommender method for mixed-initiative narrative world creation. In

Interactive Storytelling – Proceedings of ICIDS 2021 (LNCS 13138). Springer,

Cham, 13–28.

[13] Arunpreet Sandhu, Zeyuan Chen, and Joshua McCoy. 2019. Enhancing wave

function collapse with design-level constraints. In Proceedings of the 14th In-
ternational Conference on the Foundations of Digital Games (FDG ’19) Article

17. Association for Computing Machinery, San Luis Obispo, California, USA, 9

pages. isbn: 9781450372176. doi: 10.1145/3337722.3337752.

[14] Ruben Smelik, Tim Tutenel, Klaas Jan De Kraker, and Rafael Bidarra. 2010.

Integrating procedural generation and manual editing of virtual worlds. In

Proceedings of the 2010 Workshop on Procedural Content Generation in Games,
1–8.

[15] Ruben M Smelik, Tim Tutenel, Rafael Bidarra, and Bedrich Benes. 2014. A

survey on procedural modelling for virtual worlds. Computer Graphics Forum,

33, 6, 31–50.

[16] Ruben M Smelik, Tim Tutenel, Klaas Jan de Kraker, and Rafael Bidarra. 2011.

A declarative approach to procedural modeling of virtual worlds. Computers &
Graphics, 35, 2, 352–363.

[17] Ruben M Smelik, Tim Tutenel, Klaas Jan de Kraker, and Rafael Bidarra. 2010. In-

teractive creation of virtual worlds using procedural sketching. In Eurographics
(short papers), 29–32.

[18] Gillian Smith, Jim Whitehead, and Michael Mateas. 2010. Tanagra: a mixed-

initiative level design tool. In Proceedings of the Fifth International Conference on
the Foundations of Digital Games. ACM, 209–216. doi: 10.1145/1822348.1822376.

[19] Oskar Stålberg. 2022. Art by Oskar Stalberg. (2022). https://oskarstalberg.tumb

lr.com/.

[20] Oskar Stålberg. 2022. Bad North - A Minimalistic, Real-Time Tactics Roguelite

with Vikings. (2022). https://www.badnorth.com/.

[21] Oskar Stålberg. 2022. Townscaper. (2022). https://oskarstalberg.com/Townscap

er/.

[22] Boris the Brave. 2022. DeBroglie Documentation. (2022). https://boristhebrave

.github.io/DeBroglie/index.html.

[23] Sean P. Walton, Alma As-Aad Mohammad Rahat, and James Stovold. 2020.

Mixed-initiative procedural content generation using level design patterns and

interactive evolutionary optimisation. ArXiv, abs/2005.07478.

8

https://doi.org/10.1145/3235765.3235815
https://github.com/mxgmn/WaveFunctionCollapse
https://doi.org/10.1109/TG.2021.3076368
https://doi.org/10.1145/3102071.3110566
https://doi.org/10.1145/3102071.3110566
https://doi.org/10.1109/CIG.2019.8848019
https://doi.org/10.1145/3337722.3337752
https://doi.org/10.1145/1822348.1822376
https://oskarstalberg.tumblr.com/
https://oskarstalberg.tumblr.com/
https://www.badnorth.com/
https://oskarstalberg.com/Townscaper/
https://oskarstalberg.com/Townscaper/
https://boristhebrave.github.io/DeBroglie/index.html
https://boristhebrave.github.io/DeBroglie/index.html

	Abstract
	1 Introduction
	2 Related Work
	2.1 Basic Wave Function Collapse
	2.2 WFC variants and extensions

	3 Mixed-initiative Contribution
	4 History Navigation
	5 Direct Manipulation
	5.1 Pencil tool: direct manual collapsing
	5.2 Brush tool: direct manual un-collapsing
	5.3 User-defined templates

	6 Tile Manipulation
	6.1 Weight manipulation
	6.2 Transformation manipulation
	6.3 Pattern exclusion

	7 Evaluation
	7.1 History navigation evaluation
	7.2 Direct manipulation evaluation
	7.3 Tile manipulation evaluation

	8 Conclusion

