
Translating Between Game Generators with Asterism and Ceptre
Cynthia Li

Independent researcher
San Jose, CA, USA

licynthia.x@gmail.com

Joseph C. Osborn
Pomona College

Claremont, CA, USA
joseph.osborn@pomona.edu

ABSTRACT
In this paper, we present in-progress work that converts games
made with Ceptre, a genre-agnostic game description language, into
graphical games using the framework of operational logics. Our
preliminary code targets the translation of tilemap-based dungeon
crawlers, but we present strategies for generalizing this process to
other Ceptre games and Asterism engines. We gesture at the po-
tential of operational logics and Asterism as a tool to communicate
across the many frameworks surrounding game development and
playing.

CCS CONCEPTS
• Software and its engineering → Domain specific languages;
Source code generation; • Applied computing→ Computer
games.

KEYWORDS
game generators, operational logics, formal models
ACM Reference Format:
Cynthia Li and Joseph C. Osborn. 2024. Translating Between Game Gen-
erators with Asterism and Ceptre. In Proceedings of the 19th International
Conference on the Foundations of Digital Games (FDG 2024), May 21–24, 2024,
Worcester, MA, USA. ACM, New York, NY, USA, 4 pages. https://doi.org/10.
1145/3649921.3659847

1 INTRODUCTION
There exist a wide range of game description languages and game-
making tools, all with distinct priorities and goals. Here, we focus
on two of them:

• Asterism, a tool for making game engines using the frame-
work of operational logics [8], and

• Ceptre, a genre-agnostic programming language designed
by Chris Martens that manipulates its state through rewrite
rules [6].

Ceptre allows for high-level descriptions of game rules using
multiset rewriting, and a user can define their own types rather
than being beholden to a pre-existing schema of supported game
mechanics. It’s meant to be simple to learn and use, with high flex-
ibility when it comes to what is being modelled. However, that

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
FDG 2024, May 21–24, 2024, Worcester, MA, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0955-5/24/05
https://doi.org/10.1145/3649921.3659847

flexibility means it’s difficult to commit to one graphical representa-
tion in particular—so Ceptre doesn’t at all, preferring to focus on its
formal representation. This preference for the command line means
that Ceptre doesn’t easily allow programmers to create graphical
games. Moreover, the process of translating between Ceptre and
Asterism’s distinct languages for game description shows the po-
tential for theorizing a more general approach to communication
between game generation tools.

Our ongoing research seeks to convert Ceptre games to Asterism
ones as a preliminary case study; this work is still in progress and
much of it is currently speculative. This paper theorizes a process
for how this translation might take place, suggesting structural
similarities between the two tools, and bridging the abstraction gap
between Ceptre and Asterism through annotated extra information.
This process would allow for the generation of graphical games
from high-level, abstract rewrite rules.

2 BACKGROUND
2.1 Related Work
There are many formal game description languages and game gener-
ation tools: Game Description Language is a high-level, abstract lan-
guage oriented toward planning [13]; VideoGame Description Lan-
guage provides a closed but detailed language for creating tilemap-
based 2D games [11]; Gemini generates games that reason about
the meaning of the objects within it using the game description lan-
guage Cygnus [12]; ANGELINA primarily focuses on story-based
arcade games, metroidvanias, and small 3D games with coherent
themes [2, 3].

This litany of tools shows us the breadth of game generation
research. However, they all have distinct purposes and models
of game-ness, and many of them are targeted for particular main-
stream genres of games—metroidvanias, platformers, dungeon crawlers,
etc. Their one-off nature means that we are less able to discuss how
they are related, esepcially when it comes to modeling and verifica-
tion across different frameworks. Work has been done on mapping
meaning across different games: Mirgati and Guzdial [7] manually
match tiles in Kid Icarus and Super Mario Bros. together by function,
then generate games from the shared, unified tileset. Bentley and
Osborn [1] describe a set of affordances for The Legend of Zelda,
and Sarkar et al. [10] expand this work to describe a wider set of
NES side-scrolling platformers. However, the game genres here are
fairly restricted.

2.2 Ceptre and Asterism
We choose Ceptre and Asterism specifically because they gesture
at a potential to encompass games that look very different from
the ones used above, supported by their underlying frameworks
and formal properties. Ceptre was written in reaction to game

https://orcid.org/0009-0000-7760-2657
https://orcid.org/0000-0003-0025-9525
https://doi.org/10.1145/3649921.3659847
https://doi.org/10.1145/3649921.3659847
https://doi.org/10.1145/3649921.3659847
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3649921.3659847&domain=pdf&date_stamp=2024-07-05

FDG 2024, May 21–24, 2024, Worcester, MA, USA Cynthia Li and Joseph C. Osborn

description languages that only targeted a slim range of games and
game mechanics. Its high-level descriptions mean it can describe
a wide variety of games with less effort on the writer’s part, since
a user can define their own types rather than being beholden to
a pre-existing schema of supported game mechanics. This allows
us to quickly write high-level descriptions of game rules using the
formalism of multiset rewriting.

Asterism, on the other hand, is a library that operationalizes
operational logics (OLs) in Rust, providing a computational defini-
tion of individual OLs [8]. OLs are a framework from games studies
developed by NoahWarduip-Fruin and Michael Mateas, and further
expanded on by Joseph Osborn. Like Ceptre, OLs seek to be widely
applicable to games, but they focus on fine-grained implementation
details of meaning-making through games.

OLs aren’t logics in the mathematical sense—instead, they model
“mechanics" as a meshing together of related abstract processes.
OLs identify processes (individually referred to as logics) that are
repeated across many entities throughout a game, and describe how
those processes interact with each other [9]. For example, the event
of a character jumping in a 2D sidescrolling platformer invokes
both a control logic (a player pressing the button assigned to the
“jump" action) and a physics logic (applying vertical acceleration to
the character).

Asterism allows a user to compose OLs as described above to
create game engines, which act as rule schemas for concrete game
worlds. When data is given to a ruleset, those engines produce
games. Osborn et al. [9] name the ways logics are woven together,
describing communication channels, operational integrations, and
structural syntheses:

• Structural syntheses ensure that game state is consistent
across logics, creating a cohesive game world;

• operational integrationsmediate theway logics react to events
triggered by other logics; and

• communication channels express the data that logics provide
to the player.

The engines generated by Asterism can then generate games.
This approach allows a greater number of engines to be built from
the same base parts. OLs can also describe a much wider variety
of games than general game description languages because logics
slice across game “mechanics," separating them into systems that
can instead be relocated into different kinds of games. This genre-
agnosticism makes it an attractive match for Ceptre, although the
limited current work on Asterism means it isn’t quite as flexible.

3 COMBINING FRAMEWORKS
We choose Ceptre and Asterism because they both seek to be rel-
atively agnostic to operational logics—or at least, support a wide
range of them, beyond what description languages like VDGL pri-
oritize. As opposed to GDL and its focus on planning and goals,
they’re both more interested in game rules and state changes in the
core game loop. These similarities drive our inquiry here.

Ceptre exists at a higher level of abstraction than Asterism does,
so its game descriptions require less information. Our task is to
annotate and map what does match across game schemas, then
fill in any other data that might be missing to replicate a game in
Asterism. However, this work of translating all Ceptre games to

any Asterism engine is an incredibly complex task. The exact scope
of this question is uncertain, and defining it would require more
exploration.

For this paper, we focus on translating annotated Ceptre games
to one specific Asterism engine, boxsy (see Figure 1). boxsy is a
minimal game engine based on Adam LeDoux’s Bitsy [5] for simple
tile-based dungeon crawlers. It provides a player, characters, tiles,
resources, and rooms. Players and characters can have resources,
and both tiles and characters can link to other rooms. The player can
collect resources and traverse links on collision with the characters
or tiles they belong to.

To generate a boxsy game, we first write an annotated Ceptre
schema, which can be played using the software; a playtrace is
shown in Figure 2. We seek to reverse-engineer a boxsy game out
of this Ceptre schema. The Ceptre code and mock-up code for a
generated boxsy game can be found in the supplemental materials
for this paper.

We choose this engine because it highlights linking logics and
resource logics, which Ceptre handles more easily than more fine-
grained OLs like physics and collision. Ceptre already generates
a playtrace as a transition system, and its rewrite rules support

Figure 1
A simple dungeon crawler game made with boxsy.

Figure 2
The Ceptre version of this game played to quiescence.

Translating Between Game Generators with Asterism and Ceptre FDG 2024, May 21–24, 2024, Worcester, MA, USA

pattern-matching to support resource management. While the lan-
guage can be used to express the events generated by collision logics,
graph-shaped logics are more directly structurally supported by
the tool.

3.1 Generating Games
Before translating between these two tools, we must first generate
an Asterism engine. If a game genre can be defined as “a conven-
tional configuration of operational logics in relation to one another"
[4], then we start by choosing the OLs involved in the genre for our
game. We define structural syntheses across those OLs, producing
types that show which concepts belong to the same game object
across logics—for example, a collision body, a set of controls, and a
resource pool of health would create a player character. We describe
how those types react to one another with operational integrations.
While structural syntheses are passive and ontological, operational
integrations can operate like event-reaction pairs. We might de-
clare that when the arrow keys are pressed, a character moves in
response. This level of composition, where structural syntheses
are combined with operational integrations, create game schema,
rulesets for games whose actual content can differ. Providing data
for the schema above would then generate a playable game. boxsy
uses a closed set of operational integrations, and only requires the
user to plug in its data; however, not all Asterism engines must be
constructed this way.

In contrast, Ceptre is used specifically for describing game schema,
then defining the data involved in an initial state, creating a single
game that can be played, although that initial state can be easily
swapped out for another one. A Ceptre schema contains the types
and rules of Asterism engines sans the explicit connection to OLs.
We write a Ceptre program by defining data types and predicates,
then combining those predicates in rewrite rules, which change
pieces of the program’s state by identifying the patterns on the
left hand side and replacing them with the right hand side. We
define an initial state with a set of starting predicates, then can
run the program, handling non-determinism of what rules can be
applied with either user input or randomness. Using the boxsy
engine gives us another advantage in that it already structurally
resembles this process, providing us with a heavily restricted set of
operational integrations. It’s difficult for a user of the game engine
to make a game with a behavior that the engine hasn’t defined
already, similarly to Ceptre’s separation of rule definitions from
initial state.

3.2 Translation
We define the following four types of annotations.

synthesis identifies types which are things in the game, and
what logics are attached to them:
%*** synthesis { control, collision, resource }
player_id: type.
p1: player_id.

We map the logics in the annotations to the mappings produced
by the boxsy engine. Since boxsy is quite small, this mapping is
one-to-one and works without any more qualifiers. A more com-
plex engine might prefer annotating Ceptre types directly with the
boxsy type in addition to these logics.

Additionally, the data keywordmarks types that further describe
the syntheses above:
%*** data { resource }
rsrc_id: type.
rocks: rsrc_id.
stones: rsrc_id.

The query keyword identifies predicates that reinforce the struc-
tural syntheses of the involved types. They link the types with the
data that’s associated with them:
%*** query { linking }
player_in_room player_id room_id: pred.

integration annotations mark rewrite rules, which in this case
serve as operational integrations, which in boxsy are simply called
events. They comprise of two parts—a precondition which allows
for the event to take place (the left hand side of the rule), and the
actual result of the event on the other side:
stage play {

%*** integration { collision, linking, control }
take_tile_exit:

player_in_room P R * $tile_link R (exit R')
-o player_in_room P R'.

% ...
}

Here, we identify integrations by looking at the mappings of
rewrite rules and match them directly with events in boxsy, and as-
sume compatibility because there aren’t that many possible events
to match on. If events could be applicable to multiple entities with
differing behavior, we look at the types and predicates involved
to clarify. For example, a rewrite rule named take_tile_exit ap-
plies specifically when a player touches a tile, but has the same
“logic signature" as take_char_exit. However, since the former
involves the tile_id type, we can check the rewrite rule to see
what syntheses are involved. For more complex engines, if there’s
overlap between signatures that could map to different kinds of
events offered by the same logic, we can do more precise matching
using annotations of logics’ provided concepts when specifics are
needed. Again, however, boxsy is simple enough that this is not
necessary.

Everything else—communication channels, level generation, etc—
are beyond the scope of Ceptre entirely and must be decided by
boxsy. The leap in abstraction between Ceptre’s text interface and
boxsy’s (very simple) graphical one means there’s some amount
of level and asset generation that has to happen between them.
Those processes must respect the bounds that Ceptre sets (i.e. two
characters, three rooms, a link between room 1 and 2 activated by a
particular tile, etc), but concrete data like map layout and character
positions can be fairly arbitrary. More sophisticated techniques for
level and art asset generation is out of scope here, and has been
discussed in depth elsewhere.

3.3 Roadblocks
Structurally, Ceptre and Asterism are quite similar, breaking up
into roughly the same levels of types-schema-game data. The main
difficulty of translating between them is the difference between
their fine-grained-ness and abstraction levels. For one, the game

FDG 2024, May 21–24, 2024, Worcester, MA, USA Cynthia Li and Joseph C. Osborn

update loop of many Asterism engines revolve around a process
of branching out to a specific logic to do work, then returning to
the main loop, separating work out to individual logics instead
of as a cohesive whole. Ceptre makes no such distinction; early
attempts at writing Ceptre games in an “Asterism-y way" were
clumsy and convoluted. Ceptre prefers a more concise approach,
but its rigid formalism and structure allows us to infer OL-style
relations so long as we knowwhat logics its datatypes are associated
with. This means the conversion process requires a great deal more
information when moving from Ceptre’s rewrite rules to Asterism’s
more complicated game loop.

We also sometimes need to fabricate information when reaching
levels of detail that Ceptre doesn’t care about. Ceptre can be used
to model a collision system, but doing so in full would be clumsy
since Ceptre lacks support for arithmetic or the procedural pro-
gramming style necessary for those calculations, especially when
they’re not even useful to focus on for the game system at hand.
Instead, when talking about collision in boxsy, we focus on the
actual collisions/contacts and restitutions that occur instead of the
actual math of the collision update loop. The control logic is also
often simply implied by Ceptre’s actual interface, rather than keep-
ing track of literal player inputs as we would in boxsy. The Ceptre
version of the game has no understanding of an ActionID as boxsy
defines it, and will not care about individual key presses. This must
be filled in by the translation process, whether through procedural
generation (in the case of level maps, entity placement, and geom-
etry), manually generating this content (leaving a user to fill in
missing data themselves), or through pre-set default values (e.g. for
input schemes).

4 CONCLUSION
Our research is preliminary, gesturing at what precisely the relation-
ship between Ceptre and Asterism might be. This paper discusses
a potential strategy for translating between these two tools, and
gestures at its formal implications.

Other work in this vein might use a different configuration of
operational logics or different Asterism engines, generalizing fur-
ther to encompass a wider variety of Ceptre games. boxsy was
selected specifically for its pre-existing similarity to Ceptre; how
might other engines translate? Additionally, since our mapping
is structural rather than meaning-based, we consider what might
be revealed when converting an entirely different Ceptre schema
to the same Asterism engine, or a Ceptre schema to a different
Asterism engine. These alternate Ceptre games or Asterism engines
might not even require the concepts of characters or tiles or players
altogether.

The reverse process may also be valuable, cutting away infor-
mation from Asterism games to form Ceptre schema. Since formal
work has already been done with Ceptre [6], more work on specify-
ing Asterism’s formal aspects—e.g. formally describing operational
logics—would be useful, with the goal of interoperability with Cep-
tre’s formalism in mind.

ACKNOWLEDGMENTS
We would like to thank Chris Martens for their work on Ceptre,
and for helping us with the software.

REFERENCES
[1] Gerard R. Bentley and Joseph C. Osborn. 2019. The Videogame Affordances

Corpus. In Proceedings of the AIIDE Workshop on Experimental AI in Games.
[2] Michael Cook, Simon Colton, and Jeremy Gow. 2017. The ANGELINA Videogame

Design System—Part I. IEEE Transactions on Computational Intelligence and AI in
Games 9, 2 (2017), 192–203. https://doi.org/10.1109/TCIAIG.2016.2520256

[3] Michael Cook, Simon Colton, and Jeremy Gow. 2017. The ANGELINA Videogame
Design System—Part II. IEEE Transactions on Computational Intelligence and AI
in Games 9, 3 (2017), 254–266. https://doi.org/10.1109/TCIAIG.2016.2520305

[4] Tamara Duplantis, Isaac Karth, Max Kreminski, Adam M Smith, and Michael
Mateas. 2021. A genre-specific game description language for game boy rpgs. In
2021 IEEE Conference on Games (CoG). IEEE, 1–8.

[5] Adam LeDoux. 2024. bitsy. http://bitsy.org/. Accessed 11 January 2024.
[6] Chris Martens, Alexander Card, Henry Crain, and Asha Khatri. 2023. Modeling

Game Mechanics with Ceptre. IEEE Transactions on Games (2023), 1–14. https:
//doi.org/10.1109/TG.2023.3292982

[7] NegarMirgati andMatthewGuzdial. 2023. Joint Level Generation and Translation
Using Gameplay Videos. arXiv:2306.16662 [cs.CV]

[8] Joseph C. Osborn, Cynthia Li, and Katiana Wieser. 2021. Asterism: Operational
logics as a game engine engine. In Workshop on Programming Languages in
Interactive Entertainment.

[9] Joseph C. Osborn, Noah Wardrip-Fruin, and Michael Mateas. 2017. Refining
Operational Logics. In Proceedings of the 12th International Conference on the
Foundations of Digital Games (Hyannis, Massachusetts) (FDG ’17). Association
for Computing Machinery, New York, NY, USA, Article 27, 10 pages. https:
//doi.org/10.1145/3102071.3102107

[10] Anurag Sarkar, Adam Summerville, Sam Snodgrass, Gerard Bentley, and Joseph
Osborn. 2020. Exploring Level Blending across Platformers via Paths and Affor-
dances. arXiv:2009.06356 [cs.LG]

[11] Tom Schaul. 2013. A video game description language for model-based or inter-
active learning. In 2013 IEEE Conference on Computational Inteligence in Games
(CIG). 1–8. https://doi.org/10.1109/CIG.2013.6633610

[12] Adam Summerville, Chris Martens, Ben Samuel, Joseph Osborn, Noah Wardrip-
Fruin, and Michael Mateas. 2018. Gemini: Bidirectional Generation and Analysis
of Games via ASP. Proceedings of the AAAI Conference on Artificial Intelligence
and Interactive Digital Entertainment 14, 1 (Sep. 2018), 123–129. https://doi.org/
10.1609/aiide.v14i1.13013

[13] Michael Thielscher. 2011. The General Game Playing Description Language is
Universal. In Proceedings of the Twenty-Second International Joint Conference on
Artificial Intelligence - Volume Volume Two (Barcelona, Catalonia, Spain) (IJCAI’11).
AAAI Press, 1107–1112.

https://doi.org/10.1109/TCIAIG.2016.2520256
https://doi.org/10.1109/TCIAIG.2016.2520305
http://bitsy.org/
https://doi.org/10.1109/TG.2023.3292982
https://doi.org/10.1109/TG.2023.3292982
https://arxiv.org/abs/2306.16662
https://doi.org/10.1145/3102071.3102107
https://doi.org/10.1145/3102071.3102107
https://arxiv.org/abs/2009.06356
https://doi.org/10.1109/CIG.2013.6633610
https://doi.org/10.1609/aiide.v14i1.13013
https://doi.org/10.1609/aiide.v14i1.13013

	Abstract
	1 Introduction
	2 Background
	2.1 Related Work
	2.2 Ceptre and Asterism

	3 Combining Frameworks
	3.1 Generating Games
	3.2 Translation
	3.3 Roadblocks

	4 Conclusion
	Acknowledgments
	References

