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Figure 1: Two Different Performing Cars Racing On A Balanced Racetrack.

ABSTRACT
Procedural Content Generation (PCG) has demonstrated its capa-
bility to create compelling game content across various domains,
including racing games. In this paper, a novel approach utilizing
PCG is presented that aims to generate racetracks with the primary
objective of ensuring fairness and balanced gameplay regardless of
the player’s vehicle choice1. The proposed framework comprises
three distinct phases: During the first phase, modular racetrack
segments are procedurally generated in order to enhance track
variety, which plays a crucial role in providing an engaging gaming
experience. In the second phase, AI car controllers are employed
on different vehicles to simulate driving through all generated race-
track segments, gathering various statistics. This step allows for
the collection of data that will inform decision-making during the
final assembly of the complete racetrack. Finally, in the third phase,
the collected data is utilized to select and assemble the most suit-
able racetrack segments, ensuring fairness for all simulated vehicle
types by avoiding any potential unfair advantages or disadvantages.

1The pool of vehicles needs to be reasonable. A bicycle can never realistically compete
against a NASCAR vehicle.
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To further support this innovative framework, its theoretical foun-
dation is explored, and detailed explanations of each step involved
in the process are provided.
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1 INTRODUCTION
Procedural Content Generation (PCG) refers to the process of cre-
ating content through algorithms rather than manually designing
them [19]. This approach allows for unlimited variations in content
design, ensuring each generated in-game elements remains unique
and captivating. By leveraging mathematical principles, a game
can generate an infinite number of content layouts that provide
varying levels of difficulty and excitement for players. In this paper,
we explore the utilization of PCG for racetrack generation with a
focus on maintaining balance within the gameplay experience.

In a racing game where all vehicles are identical and have the
same specifications, there would be little to no need for balance or
strategy in order to succeed. Instead, the race would purely come
down to each racer’s individual skill level - their reflexes, under-
standing of track layouts, and ability to handle pressure during
high-stakes moments. However, when different vehicles with vary-
ing attributes are introduced into a racing game, it adds an entirely
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new layer to the competitive experience. These differences can
range from speed boosters, handling, weight distribution or even
weaponry on certain vehicles - all of which play a significant role
in determining how a race will unfold and who ultimately emerges
as the victor. This element of variety not only enhances strategic
thinking but also adds an extra dimension to the gameplay expe-
rience that keeps players engaged for longer periods. However, if
care is not taken in the construction of the racetrack and associated
vehicle attributes, it can be difficult to avoid one vehicle class that
dominates across player.

Our research work primarily focuses on game balance, which
involves ensuring that all tracks are equally challenging and enjoy-
able for players regardless of their vehicle choice. By procedurally
generating racetracks while maintaining fairness for all vehicles,
we aim to enhance the overall gaming experience.

1.1 Problem Statement
Game balance is an integral component of game design, focusing
on the degree of fairness and challenge provided by a game to
its players [3]. Achieving optimal game balance requires an in-
depth examination of various aspects, including game mechanics,
player abilities, and preferences. In the context of racing games,
essential factors for consideration include rational design princi-
ples such as race line, clipping points, track width, camber and
height variation [12]. Additional elements to be considered may
include multiple paths, track obstacles, and environmental effects.
We define a fair racetrack as one that offers equal opportunities and
challenges to all participants irrespective of their selected vehicle.
Specifically, a racetrack is considered fair when each vehicle,
operated optimally, completes the track in a similar amount
of time.

2 RELATEDWORK AND CONTRIBUTION
Numerous studies have explored the development of algorithms for
procedural racetrack generation. Similarly, research on gameplay
balance has garnered significant interest. However, to the best of
our knowledge, there has been limited investigation into the specific
task of balancing racetracks based on race car attributes.

2.1 Procedural Racetrack Generation
Using search-based approaches, research has concentrated on cre-
ating a customized content, as suggested by Togelius et al. [22],
resulting in tracks tailored to the player based on their profile. Other
investigations have focused on enhancing the player fun factors
by increasing the track diversity, which is determined by consid-
ering its curvature and speed profiles, as proposed by Cardamone
et al. [6] and Maulidevi et al. [1]. Cardamone et al. later developed
an interactive software that generates tracks using evolutionary
algorithms [5]. Behrens et al. propose an algorithm for generat-
ing racetracks through the use of a control point representation,
whereby these control points are procedurally positioned to create
diverse tracks. [4]. Li et al. used pre-defined track blocks, which are
pre-determined parameterized track segments, to generate roads in
their research [10]. A more recent study put forth by Nascimento
et al. uses chain code and images of pre-defined real tracks that
achieves good results [13]. A study proposed by Gisslén et al. uses

adversarial reinforcement learning techniques to generate race-
track with one agent being a builder and the other agent being
a tester [8]. These studies often employ diverse methods to gen-
erate racetrack components and assemble them utilizing distinct
algorithmic approaches.

2.2 Gameplay Balance
Analyzing gameplay balance can be highly subjective, influenced
by numerous factors. A study conducted by Becker et al. [3] reveals
the inconsistencies among authors’ interpretations regarding this
topic, emphasizing its complex nature. Despite these challenges, re-
searchers have proposed variousmethods to approach game balance
from their unique perspectives. For instance, Vicencio-Moreira et
al. [23] introduced a scheme that adjusts aim assist for First-Person
Shooter games. Tijs et al. [21] proposed to take users’ overt behavior
and physiological responses when considering balance adjustment.
Jaffe [9], on the other hand, proposed simulating gaming experience
using restricted artificial agents as an alternative approach. One
study proposed by Cechanowicz et al. [7] explored ways to balance
a racing game targeting different racers. These methods typically
involve gathering data either through play-testing or simulation
and apply their respective definitions of game balance accordingly.

2.3 Contribution
Our research contribution encompasses a three-step framework that
combines constructive and constraint-based elements. Initially, we
procedurally create racetrack segments. Subsequently, we employ
AI agents to simulate gaming performance within these racetrack
segments. Finally, leveraging the collected data, we generate a
fair racetrack. To demonstrate the versatility of our framework,
we explore alternative approaches for each step, elucidating the
necessary conditions that such alternatives must meet for successful
deployment.

3 FRAMEWORK OVERVIEW
Some racetracks, see Figure 2, can favor vehicles with certain at-
tributes and provide an unfair advantage over others, creating an
unbalanced game experience in a racing game with cars having
widely different abilities. If the track has a lot of sharp turns, vehi-
cles with high handling and acceleration attributes could have an
edge over those with high-speed attributes. Similarly, if the track
has a lot of straight stretches, vehicles with high-speed attributes
may have an advantage over those with a low max speed.

Homogenizing vehicles with varying stats by making them per-
form identically throughout a race may result in uninteresting and
monotonous experiences as it strips away each vehicle’s distinct
attributes. We propose a framework that involves creating race-
track loops with multiple segments where certain vehicles excel at
some point, but their advantages are neutralized by the end. Each
segment introduces drama as one vehicle may lead for a brief period
before losing its lead on a different segment.

Formally, our framework is as follows
(1) Prepare swappable racetrack segments along with vehicles

with multiple attributes.
(2) Simulate vehicles on racetrack segments to acquire perfor-

mance data.
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Figure 2: The racetrack on the left favors vehicles with high
speed and the racetrack on the right favors those with better
handling.

(3) Use acquired date to assemble a racetrack.
Numerous approaches can be employed to address each of the

aforementioned steps. This research paper explores several poten-
tial methodologies as a proof of concept within the context of this
framework.

4 VEHICLE ATTRIBUTES
Our research requires vehicles with varying abilities. Popular racing
games, such as Mario Kart [24], present the following stats for their
vehicles:
• Speed: Determines the top speed of the vehicle.
• Acceleration: Determines the rate the player can reach top
speed
• Weight: Determines the impact when collision happens.
• Handling: Determines the ability to performs turns swiftly
and accurately.
• Traction: Determines the interaction between the kart and
environment.

One can always add or subtract from the list provided above to
create different sets of stats. Our study employs a physics-based
car controller with the following attributes: maximum speed, ac-
celeration, maximum steering angle, and steering speed. While
our current implementation adopts a simplified approach, future
research endeavors can tailor these vehicle attributes to align with
specific gameplay requirements.

5 PROCEDURAL RACETRACK SEGMENT
GENERATION

We break down a racetrack circuit (loop) into smaller chunks which
we call segments (similar to the work of Li et al.[10]). We want to
be able to swap these segments with other segments to even our
racetrack biases. Therefore, the alternative segments must have
the same entry and exist point. This ensures seamless connectivity
between segments during the swapping process. Ideally we would
have a large set of segments and cars such that for each car there
exists a segment where it is faster than all other cars.

Numerous methods exist for generating modular racetrack seg-
ments. These may include crafting them by hand or employing spe-
cial techniques, such as Non-UniformRational B-Splines (NURBS) [15].
We deployed tile-based procedural content generationmethods [11].

We first start with the common six-path tiles used in a tiling
algorithm on a grid, see Figure 3. We then use these tiles as the race-
track segments and layout a racetrack tiling, as shown in Figure 4.

Figure 3: Six-path tiles: two straightaways, oriented either
horizontally or vertically, and four turns that alter the track’s
direction. Tiles are numbered in black.

Figure 4: A racetrack generated using the six-path tiles. Tiles
are numbered in black.

The issue with this approach lies in its restriction regarding the
number of racetrack segments available, which proves insufficient
for our desired application. To overcome this obstacle, we utilize
the six-path tiles to construct larger tiles using tilings of these tiles.

In general, we need to construct multiple 𝑛 ×𝑚 tiling configu-
rations that incorporate "straightaways" resembling tiles 5,6 from
Figure 3 and "turns" resembling tiles 1,2,3,4. We have chosen to
analyze all possible paths on five-by-five tilings where the exits
are positioned at the center of each row or column. This genera-
tion process yielded a total of 24, 918 unique tiles. Some tiles are
shown in Figure 5. These tiles provide a good diversity of racetrack
segments to perform vehicle performance data collection and final
racetrack assembly.

6 PERFORMANCE DATA COLLECTION
Using these generated racetrack segments, we can collect perfor-
mance data for each vehicle. In an intensely competitive sports
environment, it is crucial to identify and assess key performance



FDG 2024, May 21–24, 2024, Worcester, MA, USA Mirkamil Majid and Roger Crawfis

Figure 5: Six out of a possible 24, 918 large tiles acquired form
enumerating the six-path tiles on a five-by-five grid.

indicators (KPIs) so that participants may enhance their perfor-
mance, minimize errors, and optimize their skills [14]. One of the
most critical KPIs for a race car on a track is average lap time, as it
directly reflects a vehicle’s speed and efficiency [16].

We chose to modify this metric by using the time taken by the
vehicle to complete a specific segment. To obtain such performance
data, we can either have players conduct test runs on various race-
tracks or utilize AI agents to operate and race each car on these
segments. We elected to employ AI controllers to simulate these
tracks, due to the large number of segments we have generated.

Numerous research efforts have been devoted to creating self-
driving vehicles. Examples include user-recorded data-induced car
controllers [2], reinforcement learning-based car controllers [18][17],
or genetic algorithm-based car controllers [20]. Any of these will
work for our purposes, we have implementedAI agents programmed
to follow a race line.

6.1 Racetrack Segment Completion Time
After selecting an appropriate AI controller, we proceeded to com-
pute the completion times for each segment across two vehicles.
These calculated values were then documented alongside corre-
sponding track segment identifiers and vehicle types in preparation
for the creation of a final racetrack compilation.

We started with two vehicles, Car A and Car B and simulated
them on all racetrack segments. Generating diverse racetrack seg-
ments provides varied performance among vehicles. Analyzing the

summary statistics presented in Table 1 for completion times on all
segments, we observed that the standard deviations for completion
time for Car A and Car B are 7.99 and 5.87 respectively, meaning
Car A completes each segment within 28 to 44 seconds and Car B
completes each segment within 23 to 34 seconds.

Upon further examination of the data, we see that Car B’s mean
value stands at 29.26, contrasting with Car A’s higher mean value of
35.92. Moreover, 75% of Car B’s completion times fall below 33.21,
while this threshold is 41.37 for Car A. This indicates that Car B
exhibits superior overall performance compared to Car A.

Car Mean STD Min Max 25% 50% 75%
A 35.92 7.99 5.00 70.20 30.69 36.07 41.37
B 29.26 5.87 13.09 64.88 25.51 29.55 33.21

Table 1: Summary statistics on all 24,918 segments for two
possible vehicles.

To verify if there exists a sufficient number of segments where
Car A outperforms Car B, a plot depicting the difference in com-
pletion time for each racetrack segment, see Figure 6, has been
provided. The x-axis represents racetrack segment IDs, while the
y-axis displays the completion time obtained by subtracting Car
B’s completion time from Car A’s completion time. The red line
signifies a value of 0, indicating equal completion times for both
vehicles in that particular segment. Data points above this line in-
dicate longer completion times for Car A, and vice versa if below
the line. While Car B is clearly better for most segments, this figure
demonstrates ample data entries on both sides of the line, with
24, 566 entries above the line and 352 entry below the line, allowing
us to confidently propose the final racetrack assembly algorithm.

Figure 6: Completion time difference on each racetrack seg-
ment. X axis represents racetrack segment ID. Y axis repre-
sents completion time difference.

7 RACETRACK ASSEMBLY
Given the data in Section 6, we can systematically select and arrange
the segments of the racetrack to form a closed circuit, ensuring that
the overall design of the racetrack provides an equitable competitive
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environment for all categories of vehicles. Mathematically, let 𝑇 =

{𝑡1, 𝑡2, · · · , 𝑡𝑛} be the set of all expanded racetrack segments. Let
𝑉 = {𝑣1, 𝑣2, · · · , 𝑣𝑤} be the set of all vehicles and let 𝑐𝑖 𝑗 be the
completion time for vehicle 𝑣𝑖 on track 𝑡 𝑗 . Let 𝑆 = {𝑠1, 𝑠2, · · · , 𝑠𝑚}
be sequence of integers where 𝑡𝑠𝑖 denote an expanded racetrack
segment. We want to create an 𝑆 with the following constraints:

{𝑡𝑠1 , 𝑡𝑠2 , · · · , 𝑡𝑠𝑚 }forms a loop, and (1)

∑︁
𝑘∈𝑆

𝑐1𝑘 ≈
∑︁
𝑘∈𝑆

𝑐2𝑘 ≈ · · · ≈
∑︁
𝑘∈𝑆

𝑐𝑤𝑘 (2)

7.1 Selection Algorithm
To satisfy Constraint 1, we first randomly construct an 𝑆 such
that the selected expanded racetrack segment forms a loop. For
constraint 2, we first calculate∑︁

𝑘∈𝑆
𝑐1𝑘 ,

∑︁
𝑘∈𝑆

𝑐2𝑘 , · · · ,
∑︁
𝑘∈𝑆

𝑐𝑚𝑘

respectively. We then calculate the average of these values as

𝑎 =

∑
𝑘∈𝑆 𝑐1𝑘 +

∑
𝑘∈𝑆 𝑐2𝑘 + · · · +

∑
𝑘∈𝑆 𝑐𝑚𝑘

𝑚

Finally, we calculate the difference between each term and the
average, square it, and sum it to form the mean squared error

𝑒𝑟𝑟𝑜𝑟 = (
∑︁
𝑘∈𝑆

𝑐1𝑘 − 𝑎)2 + (
∑︁
𝑘∈𝑆

𝑐2𝑘 − 𝑎)2 + · · · + (
∑︁
𝑘∈𝑆

𝑐𝑚𝑘 − 𝑎)2

The 𝑒𝑟𝑟𝑜𝑟 denotes the imbalance within the racetrack; as this
value approaches 0, the track becomes increasingly balanced. To
minimize the error, a formal grammar approach is employed. Ini-
tially, we commence with a complete racetrack utilizing the gen-
erated segments, see Figure 7. We then calculate the 𝑒𝑟𝑟𝑜𝑟 . Sub-
sequently, we select a segment, annotated by the the red square.
This selected segment is substituted with an alternative segment,
numbered in black. If the new 𝑒𝑟𝑟𝑜𝑟 value is less than the previous
one, the substitution is accepted; otherwise, it is rejected. We then
repeat the process until the 𝑒𝑟𝑟𝑜𝑟 is below a given threshold, 𝜆.
Our substitution rules are straightforward, permitting each race-
track segment to be replaced with another segment that possesses
identical opening configurations. The complete selection process is
formalized in Algorithm 1.

Algorithm 1 Selection Algorithm

while 𝑒𝑟𝑟𝑜𝑟 > 𝜆 do
Randomly select 𝑠𝑜𝑙𝑑 ∈ 𝑆
𝑠𝑛𝑒𝑤 ← 𝑡𝑠 where the vehicle fallen behind performs the best
𝑒 ← the new error value with the new segments
if 𝑒 < 𝑒𝑟𝑟𝑜𝑟 then

𝑒𝑟𝑟𝑜𝑟 ← 𝑒

𝑠𝑜𝑙𝑑 ← 𝑠𝑛𝑒𝑤
end if

end while

Figure 7: The provided image features an arbitrary race-
course, with a designated section enclosed within the red
square being targeted for replacement. A series of alternative
segments are presented alongside, identified by numerical
black markers, which may serve as potential replacements
for the selected segment.

8 EXPERIMENTAL RESULT
Our experimental outcomes encompass three parts. The first part
highlights a concrete use case, while the second part focuses on
demonstrating the algorithm utilizing b𝑒zier curve-based racetrack
segments. The third part presents noteworthy discoveries that can
serve as a foundation for future research endeavors.

8.1 Use Case
Initially, we designed a racetrack comprising 100 segments, see
Figure 8. Each horizontal edge was formed by 40 linear straight

Figure 8: A racetrack constructed using 100 tiles.

segments, while the vertical edges were established using 8 such
segments. The four corners features 4 turning segments each. We
then applied the selection algorithm to only replace one-third of the
straight segments until the track is fair and obtained the racetrack
in Figure 9. Using the same set of segments, we can permutate and
obtain

𝑃 (100, 32) = 100!
(100 − 32)!

≈ 3.763099 × 1061

different racetracks.
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Figure 9: A fair racetrack obtained by applying the substitu-
tion algorithm to the racetrack on Figure 8.

8.2 Bézier Curve Segments
To showcase the flexibility of our algorithm, we incorporated track
segments using Bézier curves. By experimenting with various com-
binations and configurations, we successfully produced diverse
Bézier curve, see Figure 10. In this particular example, we utilized
three points to generate the necessary segments. We ensured that
the tangents at both endpoints remained fixed while randomly ad-
justing the position and tangent of the second point, resulting in the
formation of straightaway segments. We repeated the process men-
tioned in Section 6 on a set of two different vehicles and recorded
the performance data. Subsequently, various track layouts were
created, with some segments designated for substitution. Our algo-
rithm was then employed to generate fair racetracks, as showcased
in Figure 11. The tracks on the left depict the initial layouts, the
red squares mark the segments chosen for substitution. The tracks
on the right represent the resulting fair racetrack configurations
generated through our substitution algorithm, with two vehicles
finishing the race within 3 seconds from each other.

Figure 10: Some racetrack segments acquired using Bézier
curves.

8.3 Discovery
After applying our algorithm to various racetracks, we have plotted
the cumulative differences in completion times for both Car A and
Car B as they traversed through each segment of the course. This
analysis has revealed several intriguing insights.

Figure 12 shows one example. The racetrack is shown on the top.
The x-axis on the plot represents racetrack segments that they visit
in order, and y-axis displays the accumulative completion times
obtained by subtracting Car B’s accumulative completion time from
Car A’s accumulative completion time. For example, the value of
𝑦 at 𝑥 = 2 represents the completion time difference when both
vehicles finished traveling the first two segments. If the value is
positive, it indicates that Car A spends more time completing these

Figure 11: Unfair racetracks (Left) and fair racetracks (right).

segments (Car B is in lead). And vice versa (Car A is in lead) if the
values is negative.

Figure 12: Fair racetrack along with performance difference
plot. The red dot is the starting point of the track and track is
oriented counter-clock wise. Track segments are numbered
in black.

The plot demonstrates a trend where Car B initially falls be-
hind, exhibiting an accumulative performance difference below
zero upon completing the initial segment; however, as the race
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progress, it steadily narrows the gap between itself and Car A,
ultimately converging towards zero accumulated difference.

In contrast to Figure 12, Figure 13 presents an alternative sce-
nario where Car B assumes a leading position at the outset and
toward the conclusion of the competition, with the accumulative
difference being above 0 during segments 0 to 4, while Car A ex-
hibits a remarkable surge near the end that results in a substantial
reduction of the gap between both vehicles, as the accumulative
difference falls below zero from segments 4 to 5.

Figure 13: Fair racetrack along with performance difference
plot. The red dot is the starting point of the track and track is
oriented counter-clock wise. Track segments are numbered
in black.

A different racetrack layout, see Figure 14, portrays another
narrative where Cars A and B interchangeably close the distance
between them throughout the race, leading to a more dynamic and
oscillatory performance trajectory. The reason for such uniformity
is that we are essential osculating two segments with different
orientations. This drama can be controlled and future work will
look into having the designer produce or difference graph and
searching for a racetrack that provides that behavior.

9 FUTUREWORK
The proposed theoretical framework demonstrates versatility in
accommodating a wide range of track segment attributes and AI-
driven driving features. While our present examples may be some-
what restrictive due to exclusion of additional elements, like height
variations, overhangs, and tunnels, incorporating these aspects into

Figure 14: Fair racetrack along with performance difference
plot. The red dot is the starting point of the track and track is
oriented clock wise. Track segments are numbered in black.

the segments can significantly enhance the intrigue of racetrack
layout design.

For future research, investigating the impact of distinct vehicle
controllers on simulation outcomes is recommended, particularly
in relation to accommodating diverse human playing styles and
assessing their influence on racetrack generation procedures.

Regarding error metrics, this investigation primarily focuses
on ensuring racetrack fairness. As a potential area for further ex-
ploration, developing multilayered error formulations and opti-
mizations could extend beyond fairness to encompass additional
intriguing gameplay objectives.

Furthermore, the study introduces its framework using two ve-
hicles; expanding this framework to include more vehicles and
assessing the robustness of the framework is beneficial for future
studies. Additionally, designing a framework that can produce dif-
ferent car stats such that each car has some advantage in certain
segments is valuable.

Lastly, the previous section’s findings raise an interesting ques-
tion: given a designer sketch of accumulative time difference, how
can we generate a racetrack that satisfies such conditions?

10 CONCLUSION
In this paper, we present a novel three-step framework aimed at
mitigating racetrack biases. We explore various alternatives and
enhancements for each step in our proposed methodology. The first
stage involves generating racetrack segments using two distinct
approaches - 5x5 tiling and Bézier curve. A crucial constraint is
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enforced, ensuring that entries and exits align seamlessly across
these segments. The second step is to gather performance data using
self-driving AI, we demonstrated this using a race line following
AI. Finally, a grammar substitution algorithm is utilized to address
racetrack biases by optimizing an error function specifically tailored
for this purpose. We showed some possible future research that
may focus on alternative methods or augmentations of each step
within our proposed model. This innovative framework serves as a
solid foundation upon which further developments can be built in
the pursuit of reducing racetrack disparities.

REFERENCES
[1] Hafizh Adi Prasetya and Nur Maulidevi. 2016. Search -based Procedural Content

Generation for Race Tracks in Video Games. International Journal on Electrical
Engineering and Informatics 8 (12 2016). https://doi.org/10.15676/ijeei.2016.8.4.6

[2] Mayank Bansal, Alex Krizhevsky, and Abhijit Ogale. 2018. Chauffeur-
Net: Learning to Drive by Imitating the Best and Synthesizing the Worst.
arXiv:1812.03079 [cs.RO]

[3] Alexander Becker and Daniel Görlich. 2020. What is Game Balancing? - An
Examination of Concepts. ParadigmPlus 1, 1 (Apr. 2020), 22–41. https://doi.org/
10.55969/paradigmplus.v1n1a2

[4] Fabian Behrens and Ulrich Gohner. 2020. Procedural race track generation for
domain randomization. (2020), 4 pages.

[5] Luigi Cardamone, Pier Luca Lanzi, and Daniele Loiacono. 2015. TrackGen: An
interactive track generator for TORCS and Speed-Dreams. Applied Soft Computing
28 (03 2015), 550–558. https://doi.org/10.1016/j.asoc.2014.11.010

[6] Luigi Cardamone, Daniele Loiacono, and Pier Luca Lanzi. 2011. Interactive
evolution for the procedural generation of tracks in a high-end racing game.
Genetic and Evolutionary Computation Conference, GECCO’11, 395–402. https:
//doi.org/10.1145/2001576.2001631

[7] Jared E. Cechanowicz, Carl Gutwin, Scott Bateman, Regan Mandryk, and Ian
Stavness. 2014. Improving player balancing in racing games. In Proceedings of
the First ACM SIGCHI Annual Symposium on Computer-Human Interaction in
Play (, Toronto, Ontario, Canada,) (CHI PLAY ’14). Association for Computing
Machinery, New York, NY, USA, 47–56. https://doi.org/10.1145/2658537.2658701

[8] Linus Gisslén, Andy Eakins, Camilo Gordillo, Joakim Bergdahl, and Konrad
Tollmar. 2021. Adversarial Reinforcement Learning for Procedural Content
Generation. CoRR abs/2103.04847 (2021). arXiv:2103.04847 https://arxiv.org/abs/
2103.04847

[9] Alexander Benjamin Jaffe. 2013. Understanding Game Balance with Quan-
titative Methods. PhD thesis. University of Washington. Avail-
able at https://digital.lib.washington.edu/researchworks/bitstream/handle/1773/
22797/Jaffe_washington_0250E_11528.pdf?sequence=1&isAllowed=y.

[10] Quanyi Li, Zhenghao Peng, Qihang Zhang, Cong Qiu, Chunxiao Liu, and Bolei
Zhou. 2020. Improving the Generalization of End-to-End Driving through
Procedural Generation. CoRR abs/2012.13681 (2020). arXiv:2012.13681 https:
//arxiv.org/abs/2012.13681

[11] David Maung. 2016. Tile-based Method for Procedural Content Generation. Ph. D.
Dissertation. The Ohio State University, The Ohio State University. http://rave.
ohiolink.edu/etdc/view?acc_num=osu1461077485

[12] Luke McMillan. 2011. A Rational Approach To Racing Game Track De-
sign. https://www.gamedeveloper.com/design/a-rational-approach-to-racing-
game-track-design.

[13] Erik Jhones F. Nascimento, Tassiana M. Castro, Ana Carolina S. Abreu, Fil-
ipe A. Lira, and Amauri H. Souza. 2021. Procedural Generation of Isomet-
ric Racetracks Using Chain Code for Racing Games. In 2021 20th Brazilian
Symposium on Computer Games and Digital Entertainment (SBGames). 136–143.
https://doi.org/10.1109/SBGames54170.2021.00025

[14] NSCA’s Essentials of Sport Science. 2023. Skill-Based Key Performance Indica-
tors.

[15] Les Piegl and Wayne Tiller. 1996. The NURBS Book (second ed.). Springer-Verlag,
New York, NY, USA.

[16] Alex Ryzhkov. 2023. Car Racing Track Core 7 KPI Metrics to Track and How to
Calculate.

[17] Ahmad EL Sallab, Mohammed Abdou, Etienne Perot, and Senthil Yogamani. 2017.
Deep Reinforcement Learning framework for Autonomous Driving. Electronic
Imaging 29, 19 (Jan. 2017), 70–76. https://doi.org/10.2352/issn.2470-1173.2017.
19.avm-023

[18] Yusef Savid, Reza Mahmoudi, Rytis Maskeliūnas, and Robertas Damaševičius.
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