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ABSTRACT
Work on procedural content generation o�en centers game me-
chanics and visual/audio aesthetics, whereas the generation of
social structures has not received the same a�ention, despite po-
tentially enabling new forms of gameplay. When the generation
of social and/or cultural content is a�empted, tensions naturally
arise between algorithmic e�ciency, realism, and representation.
A speci�c algorithm for generating family trees is used as a case
study for these issues, with the hope that this can stimulate broader
discussion in the community.
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1 INTRODUCTION
Generative methods have been applied to the creation of digital
game worlds since practically the advent of digital games (see e.g.,
Rogue [22]). �e techniques applied have focused in large part
on physical play spaces and combat-centric enemy distributions
and statistics, however (in games such as Minecra� and Le�4Dead
[14, 20]). In contrast to these techniques, a few games have applied
generative methods to things like narrative development, interper-
sonal relationships, or even entire cultures and mythologies (e.g.,
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Façade, �e Sims, Dwarf Fortress, and Ultima Ratio Regum [1, 6, 7, 10–
12]). Despite the potential these games have shown for introducing
new modes of gameplay and engaging new audiences, academic
research on procedural content generation (PCG) for in-game cul-
tures and societies is quite rare relative to techniques for generating
physical environments.

One reason for this may be that when algorithms move from
physical spaces to social or cultural spaces, they take on addi-
tional cultural implications that may be divisive or exclusionary,
ultimately becoming �ashpoints for pushback. Generating so-
cial/cultural spaces puts in con�ict the ideals of e�ciency (of al-
gorithms and/or development), realism (or believability), and rep-
resentation (broadly: creating work that has positive social im-
pact, especially with respect to marginalized identities). �e game
RimWorld [21] serves as a recent example of such con�icts. �e
relationship code in that game (a colonization/management game
which uses PCG for its starting scenarios) came under �re a�er
it was revealed to proscribe gender roles in a way that created
problematic in-game dynamics (unfortunately, as one might expect,
the out-of-game dynamics that resulted were also fraught) [9]. �is
kind of incident shows how complicated the ever-present spectre
of “bad content” can get when social/cultural content is produced.
Ignoring for a moment the author’s intentions, RimWorld illustrates
what could be called a tension between e�ciency (in this case of
developer time) and representation, where stereotype-propagating
in-game dynamics are the result of a quickly-put-together system.
Tensions can also arise between realism and representation: for
example, a realistic generated medieval society would include many
harmful dynamics (e.g., child slavery) that would require careful
framing to avoid sending the wrong messages. �is careful fram-
ing is complicated by the fact that some dynamics arise indirectly
from procedural rules, requiring intensive analysis beforehand to
recognize and then frame appropriately. Unfortunately, the most
common solution is to simply �lter out such fraught dynamics, but
this can not only lead to e�ciency problems, it also impacts realism
in a way that can amount to erasure. Many users will of course not
notice this erasure, but that’s precisely why it’s harmful.

�e procedural generation of social and cultural relationships
thus presents unique challenges in terms of representation, and to
elaborate on these further, a simple case study is useful. In the next
section, I discuss a system that generates nuclear family relation-
ships (mothers, fathers, and their children) in a stateless/implicit
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manner, making it randomly accessible. Being randomly accessi-
ble is a useful property for several reasons, including simulation
scaling, but presents a unique set of challenges that complicate real-
ism and representation (for more discussion of explicit vs. implicit
generation and some of the bene�ts of both approaches, see [23],
which discusses this problem in the domain of texture synthesis).

2 RANDOM-ACCESS FAMILY TREES
In the game Noctis [4], players explore a procedurally generated
galaxy about twice the size of our own, including billions of stars
and orbiting planets. �e design takes advantage of a simple fact
central to many PCG approaches: although the information content
of this galaxy is ridiculous, in a given play session, a single player
will only explore a very tiny fraction of it, and all of that information
can be coherently generated using randomly-accessible (sometimes
also called ”implicit”) noise functions such as Perlin noise [17] (see
also simplex noise [5, 15]). However, the planets of Noctis are almost
exclusively devoid of life, and there is no meaningful in-game social
or cultural interaction. What would it take to add intelligent, social
beings to Noctis’s billions of planets? It would require a similarly
randomly-accessible generation function for societies and cultures.

Games such as Dwarf Fortress and Ultima Ratio Regum have ap-
proached this problem using mixed generation approaches, where
some a�ributes are randomly accessible (and can thus be abstracted
and then re-generated to save space) while others are generated
once and then stored as permanent properties of the world (see e.g.
[7], although not much detail is provided). More academic games
such as PromWeek and Bad News have also taken on the challenge
of generating detailed social relationships, but have either used
carefully hand-cra�ed starting scenarios or ad-hoc generate-and-
store approaches [13, 18]; a fully random-access approach has not
been a�empted. For a family tree, a random-access approach would
be comprised of a set of functions which given a person could �nd
their biological parents, their children, and which partner(s) they
had each child by.

Before presenting such functions, several grounding assumptions
are useful: �rst, we can identify each “person” as an integer, so we
are looking for functions that accept and return these integer IDs.
Second (and we will revisit this), we can assume that half of our
population is male and half is female, and without loss of generality
let even-numbered IDs be female and odd-numbered IDs be male.
Now if we generate a random integer, we can �nd a “female version”
by subtracting one if it’s odd, and a “male version” by adding one if
it’s even. Finally, we will assign each ID a birth-date in sequential
order, with a parameter that controls how many births happen in
the world per day (another assumption to revisit, as it means that
population neither grows nor shrinks over time).

Now the computation of one’s biological mother is simplest,
as each child has exactly one mother (perhaps our only realistic-
enough assumption). We can “just” pick an appropriate age range
of children and shu�e1 our ID within that many children (which
we’ll call a “cohort”), then subtract an appropriate number in ID-
space corresponding to the birth-rate-per-day times the desired-
age-di�erence-in-days to �nd a mother ID. If each child uses the

1�e �eld of cryptography has extensive literature on reversible permutation algo-
rithms, see e.g. [19].
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Figure 1: Graph of family relationships. Dotted lines con-
nect fathers to their children, while solid lines connect
mothers. Edge labels are the age-at-birth of the parent.

same shu�e seed and the same cohort boundaries, there will be
no overlaps a�er shu�ing, and each mother will have exactly two
children (we assign “children” of male IDs to the corresponding
female ID). In order to have a variable number of children per
mother, we can �rst use the above technique to map small cohorts
of mothers and children together (perhaps groups of 32) and then
randomly subdivide the children while uniformly subdividing the
parents into two groups, recursively assigning the �rst and second
parent groups to the �rst and second child groups. �is subdivision
algorithm can end up with empty child groups (the split point
among children is random), in which case those parents have zero
children, but since we started with 32 parents and 32 children,
this will be compensated for by another parent in the same group
having more children. �is process gives us two functions: one for
�nding a parent ID given a child ID, and its inverse, for �nding a
child ID given a parent ID. �e inverse is computable because all of
the individual operations (shu�ing, subtraction, and subdivision)
are reversible (both parents and children need to use the same
seed for the shu�ing and random subdivisions, of course). �e
inverse function results in a few contiguous children, which can
be ordered arbitrarily. In order to avoid the situation where all
children have the same/contiguous birthdays, the child cohort can
be pre-shu�ed once (and then un-shu�ed for the inverse function)
so that contiguous results become sca�ered.

Given these parent and child functions, we can also add a partner
function, which determines the partner by which each mother had
each child. �is function works similarly to the mother-selection
function: shu�e the men in cohorts, then match them with women
(of about the same age). An extra step here is required to allow
multiple partners: �rst, each woman is assigned a random number
of partners (perhaps with a bias, again more about this in the
next section) between one and the number of children she has.
Next, di�erent seeds are used to shu�e the men, so that each
woman has multiple partner-candidates (up to 32, if that’s the
maximum number of children per mother). �en based on the
mother’s number-of-partners, she picks partner candidates starting
at a random index as her actual partners. To invert this and �nd a
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child-bearing partner from a male ID, you need to check 32 potential
partner IDs to see which of them (if any) actually chose you, but
while expensive this process is still local and constant-time (it
depends only on the max-children-per-mother parameter).

�ese invertible parent/child and mother/partner functions can
be used to generate an arbitrary region of a nearly in�nite (limited
by integer bit-widths) family tree. One such region, composed of
six generations starting with the maternal great-grandparent of
ID 1,000,000,000 is shown in Figure 1. Note that this �gure used
limited child shu�ing, so child ages are extremely close together,
but this could be �xed as described above.

3 LIMITATIONS & TRADEOFFS
As pointed out repeatedly in the previous section, the algorithms
discussed there are shot through with problematic assumptions.
�ese algorithms were developed to quickly achieve a semi-realistic
result (and even then age gaps are a serious problem), but that pro-
cess resulted in poor realism and representation. Note in particular
that the desired scope of generation (entire galaxies full of people)
means that representation issues are realism issues too: if the algo-
rithm ignores “statistically rare” occurrences, that will be noticeable
on the galaxy scale (of course, at smaller scales where it’s “not no-
ticeable,” it’s really only “not noticeable” to uncritical audiences
from majority groups, so this is still a representation issue). To
highlight several issues:

(1) Male:female ratio: �e male-female ratio at birth is not
1:1 in the real world (see e.g. [8]). Beyond that problem,
there are two more: �rst, even if we assume this applies
to biological sex only, humans have a rich range of pos-
sible sexual expression, and perhaps 1.7% of people are
not correctly described by either “male” or “female” (see
[2]). Second is the issue of gender: again a substantial per-
centage of the population is not well-de�ned by the terms
“male” or “female” [3], and this should have an impact on
family structures. �e algorithms described above thus
have both realism and representation problems in terms of
both sex and gender.

(2) Births-per-day: �e assumption that the number of births
per day is constant means that the population does not
grow over time. �is has essentially never been the case
throughout history, and could lead to a number of repre-
sentation problems beyond the obvious realism ones: if the
population is constant, then it will presumably experience
resource competition in a very di�erent way from real
populations, leading to potentially misleading procedural
messages. Unfortunately, although births-per-day could be
de�ned as a function of strict-ID order to create a correctly
exponential population, this leads to all sorts of problems
with the shu�ing and matching algorithms that are sup-
posed to create our family structures. �e births-per-day
constraint also distorts family structures, creating more
people who never have kids than is realistic. Although
this may seem like an unimportant change, small changes
in social structures can have far-reaching e�ects (see e.g.
[16]), and this gives the algorithm above more potential to
represent a distorted view of society.

(3) Independent/Con�icting Births: �e algorithm above
assumes that each child has one mother, but this selection
is independent of the other children of this mother. �is
could lead, for example, to two children being born a few
days or weeks apart, which isn’t physically possible. �is
also means that there are essentially no pa�erns to child
birthdays for a given mother, which is not at all realistic.
Ideally, an exponential distribution of child birthdays rel-
ative to mother birthdays could be achieved, but this is
technically di�cult.

(4) Partners-per-mother: �e assignment of partners-per-
mother is obviously a sensitive one, but the algorithm
introduces further problems because the birth-ordering of
the children is arbitrary, so there’s no easy way to express
a bias towards consecutive births by the same partner. �is
is both a realism problem, and without careful framing,
potentially a representation problem.

(5) Other problems: Although I’ve pointed out some of the
most obvious hang-ups with this simple algorithm, there
are doubtless more problems that could arise (for example,
how prevalent is incest using this algorithm). Because the
system is procedural, some may not be discovered until the
system is in production and exercised fully. By acknowl-
edging the problems we can �nd up-front, however, we
can hope to improve both realism and representation.

Although the problems above seem di�cult, there are actually a
variety of remedies available, some of which synergize with each
other. Some example solutions:

(1) Re-assigning childless people: �is idea addresses both
problems 1 and 2 above. Instead of trying to add random
variables which control gender/sex expression and then
preempt or alter family formation, a sample of parents
who did not have biological children under the current
system can be assigned appropriate identities (e.g. intersex,
genderqueer, asexual/aromatic, etc.). Of course, a (proba-
bly smaller) percentage of people who do have biological
children also express these identities, but an appropriate
balance could be achieved by assigning these identities
post-hoc instead of before family formation. �e in�ated
percentage of childless people in the constant-population
system is an asset here, as it ensures identities that are
anti-correlated with bearing children can be represented
at realistic levels.

(2) Sex& gender�uidity: Although it’s an irrevocable fact of
this system that each child has exactly one biological father
and one biological mother, those people don’t need to be
exactly male and female, either in sex or in gender. A more
accurate pair of terms is “child-bearer” and “partner,” and
so the even/odd assignment described above actually uses
these terms. Regardless of sex and gender identity, there’s
still one person who bears each child2, and again, post-hoc
sex and gender assignment can work from this requirement
to a variety of desired demographic distributions.

2A counter-point here would be the existence of conjoined twins, which is quite
di�cult to deal with, but could perhaps be handled using a shared-ID model.
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(3) Exponential Populations: As mentioned above, the tech-
nical barriers to exponentially growing populations are
signi�cant, but if these were overcome, such techniques
could most likely also be used to distribute child ages, and
a more realistic exponentially growing population could
be used as a backdrop for stories that addressed problems
like colonialism.

(4) BirthMerging: Although some statistical balancing might
be needed, the issue of con�icting births can be addressed
by assigning actual birth-dates in addition to nominal birth-
dates. If the birth-date mentioned above is one’s nominal
birthday, then all children of each mother can inspect each
other to �nd any con�icts, and these can be resolved by
se�ing con�icting birth-dates equal to the minimum of
the group, creating twins, triplets, etc. as necessary. �is
adds a dimension of realism/representation (the existence
of twins and triplets) while also addressing the problem of
con�icting births.

(5) Re-Framing: �e issue of multiple partners per mother
is readily controllable, and thus can be made realistic and
tackled by framing it appropriately. To reiterate an earlier
point, although such framing is not easy, the alternative of
erasing complicated identities is generally more harmful
because of how it reinforces dominant stereotypes.

�e lists above are hardly exhaustive, but I hope that they can in-
spire conversation around these topics. As a particular example of
a generative algorithm over a social space, this randomly-accessible
family-tree-generator has both unique technical constraints and
its own set of challenges in terms of realism and representation.
Sometimes the technical constraints are the source of problematic
defaults (like assigning half of IDs to be child-bearers or non-child-
bearers in order to produce e�cient pairings), but at other times
they actually give space for diverse identities to be expressed (for
example, a �xed-size population assumption leaves plenty of child-
less people who can represent parts of the gender spectrum which
don’t usually have children).

4 CONCLUSION
Ultimately, I view the technical challenges associated with improv-
ing representation and realism as inspirational. Having been forced
to think technically about how to model mothers who bear children
with multiple partners, I am inspired to assign them a diverse set
of explanations for and reactions to that identity. �at diversity in
turn could create a much more thought-provoking world for players
to explore, and could even be the basis of social game mechanics
speci�c to those people. In the end, the resulting game world is
much richer for the diversity included, even, or perhaps especially,
if it is rare. �ese technical mechanisms for representing diverse
identities can also be used for intentional representational choices.
A generative model that can represent gender�uid people out of
necessity is also one that can construct imaginary societies of great
gender �uidity in service of an author’s expressive goals.

�e larger point about generative methods to be made here is
that within generated game worlds, the algorithm is a powerful
arbiter of normalcy, and thus a natural vehicle for the expression
of stereotypes. �is is a huge responsibility in terms of the design

of these algorithms, because perpetuating the biased and broken
stereotypes that are expressed so o�en in popular culture is some-
times easier than subverting them. But PCG systems are a powerful
tool for subverting stereotypes as well, because they by their very
nature enable diversity. And when players encounter something
“outside the norm” in a game, that moment has the ability to teach
as well as surprise and excite.

By publishing this analysis of how e�ciency, realism, and rep-
resentation intersect in generated content, I hope to provoke a
discussion that goes beyond the speci�c algorithm I used as an
example here. What technical limitations have hindered realism
and/or representation in your work, and how have those led to
generating more diverse spaces? Are there speci�c state-of-the-art
techniques that could be improved upon in terms of representation
(broadly), and how might such improvements lead to other changes
in player experience and/or creative control?
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