
Team Blockhead Wars: Generating FPS Weapons in a
Multiplayer Environment

Eric McDuffee
Department of Computer Science

SUNY Oswego
Oswego, NY 13126

mcduffee@oswego.edu

Alex Pantaleev
Department of Computer Science

SUNY Oswego
Oswego, NY 13126

alex@cs.oswego.edu

ABSTRACT
We present an attempt at exploring the search space of
weapons in team-based multiplayer First-Person Shooters
(FPS). At the foundation of the experiment is Team Block-
head Wars (TBHW), a game that we developed for the pur-
poses of this project. TBHW allows human players to enjoy
classic multiplayer FPS gameplay and uses a genetic algo-
rithm to continuously generate new weapons. A weapon’s
genome consists of ten real-valued parameters, which to-
gether form a vast search space that includes common FPS
weapon tropes. The evaluation function scores weapons on
the basis of their use by players. The game also generates
3D meshes to visually represent the generated weapons for
easy player recognition. While TBHW is work in progress,
preliminary results are encouraging.

Categories and Subject Descriptors
K.8.0 [Personal Computing]: General—Games

General Terms
Design, Experimentation

Keywords
Games, procedural content generation, game design, first-
person shooters

1. INTRODUCTION AND BACKGROUND
FPS has continuously been one of the most popular game
genres since its inception more than twenty years ago. Its
success was boosted by the introduction of team-based net-
worked multiplayer games at the start of the previous decade.
Unfortunately, few innovative multiplayer FPS games have
been released recently: the multiplayer gameplay experience
is nearly identical to that of a decade ago, partly due to the
petrification of existing FPS weapon tropes and the lack
of desire by developers to risk with innovative weapon de-
signs. This unfortunate state is not helped by the amount
of resources required to create a high-quality FPS, not to

mention a multiplayer one, meaning that independent de-
velopers are unlikely to innovate in the genre.

This paper describes an experiment to explore the search
space of weapons in team-based multiplayer FPS games,
with the hope of uncovering innovative weapon patterns. To
this end we are in the final stages of building Team Block-
head Wars (TBHW), a multiplayer FPS that uses an evo-
lutionary algorithm to search for optimal combinations of
weapon parameters. The interactive and implicit evaluation
function scores weapons on the basis of their use by play-
ers while they fight in one of the several multiplayer arenas.
A central server monitors the fitness value of all equipped
weapons and procedurally creates new ones, using both an
archive of previously used weapons and the ones currently
in use. Players collect new weapons as pickups from the
arena, and can replace a weapon they are currently using
with one they have picked up before they respawn in the
game. TBHW also generates 3D meshes that correspond to
a generated weapon’s parameters to facilitate its easy recog-
nition by players.

1.1 Situating the Algorithm
TBHW generates new weapons procedurally using an evo-
lutionary search technique. Hence, it can be categorized
within the field of search-based procedural content genera-
tion, of which Togelius et al. [17] published an extensive tax-
onomy and survey. According to the distinctions the taxon-
omy makes, the game presented here uses a direct encoding
in the genotype-to-phenotype mapping, since the genome
variables (the genotype) map to attributes of the created
weapons (the phenotype). Furthermore, the content gener-
ation algorithm is online, since it is performed during the
runtime of the game. The algorithm ranks weapons on the
basis of their usage by players, which makes its evaluation
function interactive and implicit.

1.2 Search-Based PCG in Games
TBHW allows players to continuously equip their charac-
ters with new procedurally generated weapons. Similar at-
tempts at this type of content generation have been made in
the past, most prominently in Galactic Arms Race (GAR),
a two-dimensional multiplayer arcade shooter by Hastings
et al. [4]. GAR uses cgNEAT, a search-based algorithm,
to evolve the connection topology of a neural network for
each weapon’s particle system [3]. Our work, which was
partly inspired by GAR, expands on procedural generation
of weapons within the dissimilar genre of FPS, which im-



Figure 1: TBHW in action

poses its own constraints on both the algorithms used and
the content to be generated.

Borderlands and Borderlands 2 (Gearbox Software 2009 and
2012, respectively) are commercial FPS games in which weapons
are procedurally generated. However, unlike in GAR and
our work, in these games weapons are randomly created and
then balanced according to the player’s level. Weapons in
the Borderlands series are also constrained within specified
types and mechanics, with predefined meshes for each type,
whereas in our work weapon types, mechanics, and their rep-
resentation are dependent on the evolutionary algorithm.

Search-based PCG for games is a new and promising field.
Successful applications include generating tracks and lev-
els [6, 10, 12, 14], terrain and maps [11, 15], buildings [8],
camera control [2], unit types and abilities [7, 9], and rule
systems and mechanics for games [1, 5, 13, 16].

2. EXPERIMENTAL SETUP
TBHW closely models the tropes of a standard team-based
multiplayer FPS. The game allows human players to choose
weapons for their avatars before joining a multiplayer FPS
arena. Player login information, as well as inventory (which
includes favorite weapons), is stored in a centralized infor-
mation server, which is different from the multiplayer server.
Thus several multiplayer battles can take place simultane-
ously. Each multiplayer server continuously exchanges per-
tinent data with the central information server. Figure 1
depicts a two-player shootout.

TBHW implicitly keeps a fitness score of each weapon, based
on two parameters: the amount of time a weapon is equipped,
and the number of non-suicide kills achieved with that weapon.
This fitness score is used by the information server to evolve
new weapons and send the batches of evolved weapons to
any connected multiplayer servers, which then place weapon
pickups on the battlefield. The 3D meshes for the pickups
are smaller versions of the meshes used in the weapon selec-
tion screen, which allows players to recognize the parameters
of the weapons they are picking up for later use.

When a player avatar’s health points reach zero, the avatar
is removed from the game arena, and the player must wait
for fifteen seconds to rejoin. A player can also choose to en-
ter this fifteen-second respawn period at any time; a player’s
avatar effectively dies when that happens, with no kill recorded.
During this period the player has the chance to replace any
of the two previously equipped weapons with other weapons

Figure 2: Weapon selection interface

that were evolved by the server and picked up during game-
play. The replacement process is facilitated by a weapon
interface that shows an enlarged 3D model of each weapon.
A weapon’s mesh is generated, stretched and modified to di-
rectly represent the weapon’s parameters, helping quick user
interaction and weapon recognition. For example, the length
of a weapon’s barrel represents the speed of its projectile.
The same weapon meshes, representative of the capabilities
of the weapon, are also used in the arena, both for currently
equipped weapons and for weapon pickups. Figure 2 shows
an example mesh of a sniper-like weapon (long and narrow
barrel plus scope and a tiny magazine) as seen in the weapon
selection interface.

2.1 Game Mechanics
Each avatar is represented as an in-game 3D character. On
the multiplayer server avatars are collections of bounding
boxes, defined by their mesh skeletons, giving almost mesh-
accurate collision detection. The damage a projectile inflicts
on an avatar is multiplied by a given bounding box’s damage
multiplier (e.g., the head takes twice the normal amount of
damage).

When a weapon is fired, a projectile is created within the
game world. Every projectile is a sphere with a certain ra-
dius. Projectiles are affected by physics and can bounce
off of players, other projectiles, and the environment. After
a certain number of bounces the projectile detonates and
damages any players within a certain radius.

2.2 Content Representation and Evolutionary
Algorithm

Weapons and their projectiles are a central concept to the
game. Each weapon has a set of parameters, which were
chosen based on their ability to create weapons common to
the FPS genre. Those are:

• Projectile speed—the initial speed of a projectile exit-
ing the weapon.

• Projectile size—the size of the projectile (sphere ra-
dius).

• Projectile gravity—the effect that gravity has on the
projectile, as a proportion of normal gravitational pull.



Figure 3: Parts of a weapon mesh

• Projectile damage—the amount of damage a projectile
inflicts on other players.

• Projectile damage radius—the radius within which a
projectile inflicts damage (i.e., splash damage).

• Projectile bounce amount—a threshold for the number
of bounces a projectile can endure before detonating
(to model grenade launchers and the like).

• Weapon RoF—the rate of fire of the weapon, as defined
by the minimum interval between shots.

• Weapon magazine size—the number of times the weapon
can be fired before requiring a reload.

• Weapon maximum ammunition—the amount of am-
munition the player can carry for a weapon.

• Weapon reload time—the amount of time necessary to
reload a fully empty magazine.

Parameters cannot evolve outside of a preset range for each
parameter.

These ten parameters comprise a weapon’s genome and are
used to evolve additional weapons. In order to ensure a con-
tinuously changing and diverse population, TBHW’s central
information server keeps a population of weapons above a
certain fitness value. A weapon’s fitness value, as described
previously, is calculated as a function of the weapon’s usage
by players and the number of kills achieved with it. Since
this population is stored centrally, it is persistent across
game instances and game arenas. New players are given
two preset weapons to start with, which do not contribute
to evolution. If the central server does not have an archive
of previously evolved weapons, it randomly generates a set
of weapons for initial evolution and balances them.

The central server creates a new generation of weapons every
ten minutes while players are logged in. To achieve that it
uses standard fitness proportionate selection and discrete re-
combination, followed by a low-probability mutation. Then
the offspring are balanced, constraining the total damage per
second they can achieve. Balancing is an important step in
the process to ensure that new generations of weapons do not
converge on a hypothetical best weapon, which would have
all of its parameters maximized. Due to the direct encod-
ing in the genotype-to-phenotype mapping, the balancing
function effectively modifies the genome of the weapon.

As described previously, the offspring are then used by cur-
rently running multiplayer servers to place weapon pickups
on the arena.

Figure 4: Representations of two similar weapons

2.3 Graphical Representation
Players must be able to quickly differentiate between weapon
and projectile traits based on each weapon’s visual model
in order to effectively serve as the evaluation function of
the genetic algorithm. To facilitate easy player recognition
of desired traits, we used the parameters of a weapon to
define its 3D mesh; parts of a weapon’s mesh are depicted
in Figure 3. We then use this mesh to represent the weapon
visually whenever a player is able to see it (as a pickup,
equipped by an avatar, or in the weapon selection screen).

Rather than simply offer discrete mesh changes based on pa-
rameter values, such as those found in the Borderlands se-
ries, we used continuous mesh modifications for most param-
eters. We also tried to sensibly match weapon parameters
to mesh parameters, following real-world associations where
possible, in order to maximize our interface’s convenience
to users. As an example, the weapon’s barrel and stock are
elongated or shortened to visually represent the speed of
the weapon’s projectile. The barrel’s diameter is modified
to reflect the projectile’s size. We use the weapon’s sight
to represent the influence of gravity on a projectile: as the
projectile’s speed decreases and it becomes more suscepti-
ble to gravity, the sight gradually becomes more reminiscent
of a grenade launcher’s one. Conversely, as the projectile’s
speed increases, the weapon’s sight morphs into iron sights,
and finally a scope.

We used the visual size of the magazine to represent a weapon’s
magazine ammunition, as well as its maximum allowed am-
munition. We also display a ROF indicator on the sides
of each weapon. Finally, we use the color of projectiles to
display their damage as a gradient from green to red, and a
simple particle effect surrounding a projectile to represent its
damage radius. Figure 4 represents two grenade launcher-
like weapons (wide and short barrels and a launcher sight)
with different magazine ammunition and maximum ammu-
nition.

3. RESULTS AND DISCUSSION
Even though the game is still in development, it has already
shown in preliminary tests that it is capable of generating
interesting weapons. As an example, we accidentally evolved
a weapon with a high initial projectile speed, a large damage
radius, and a bounce amount of two. This allowed the player
who had equipped the weapon to stand two feet behind a
wall, shoot at the wall from a certain angle, and effectively
shell the other side of the map. By the time the projectiles
arrived there they would be dropping almost vertically. This
was a completely unexpected weapon that our algorithm
generated; we started with a combination of parameters that



achieved the effect of a grenade launcher, and in the end had
a weapon resembling a mortar, which we had not thought
to model before.

Another interesting weapon that the game generated had a
projectile speed slower than the running speed of a player’s
avatar, which made players regularly run into their own pro-
jectiles. This, combined with the fact that enemy players
could easily outrun the bullets, initially made us dismiss the
weapon. However, after a few evolutionary iterations we
accidentally uncovered a weapon that combined slow pro-
jectiles with a low gravity effect on them, high damage, and
a very high magazine capacity. This turned out to be a
nearly perfect defensive weapon, since a player could use
it to blanket a hallway with slow moving projectiles, then
switch to the other equipped (offensive) weapon and move in
the opposite direction, knowing that no enemy could sneak
from behind.

The emergence of these weapons is very encouraging at this
early stage. When the game is finalized and we test it with
real (non-developer) users, we anticipate that their fresh per-
spectives will guide TBHW to generate even more interest-
ing weapons.

4. CONCLUSIONS AND FUTURE WORK
This paper described a project in progress that explores the
search space of FPS weapons through procedural content
generation. While incomplete, TBHW has already shown
some promise towards that end.

After the project is complete and we collect test data from
real-world users, we intend to expand significantly upon the
search space of the evolutionary algorithm by introducing
an additional set of parameters, such as negative damage
(allows healing of friendly players), multiple projectiles per
shot, and weapon accuracy (bullet spread). In terms of
interface improvements, we intend to attempt generating
textures that represent weapon parameters in addition to
meshes. Another improvement is the inclusion of various
kinds of levels or maps (either human-created or procedu-
rally generated), which would allow players to explore new
subsets of the search space: a battle in an open arena is very
different from a battle in a maze of twisted, narrow hallways.

Finally, in the long term we intend to introduce enumerated
variables in the weapon genome to signify optional traits,
which will allow us to model various additional FPS tropes
such as mines and other traps. We also intend to include
traits that impact avatars in non-traditional ways, e.g., in-
crease or reduce the speed of all nearby players (presumably
members of the same team).

5. REFERENCES
[1] C. Browne. Automatic generation and evaluation of

recombination games. PhD thesis, Queensland
University of Technology, 2008.

[2] P. Burelli and G. Yannakakis. Combining local and
global optimisation for virtual camera control. In
IEEE Symp. Computational Intelligence and Games,
2010.

[3] E. Hastings, R. Guha, and K. Stanley. Neat particles:
Design, representation, and animation of particle

system effects. In IEEE Symp. Computational

Intelligence and Games, 2007.

[4] E. Hastings, R. Guha, and K. Stanley. Automatic
content generation in the galactic arms race video
game. IEEE Transactions on Computational

Intelligence and AI in Games, 1(4):245–263, 2009.

[5] V. Hom and J. Marks. Automatic design of balanced
board games. In AAAI Conf. Artificial Intelligence

and Interactive Digital Entertainment, 2007.

[6] R. Lopes, T. Tutenel, and R. Bidarra. Using gameplay
semantics to procedurally generate player-matching
game worlds. In The Third Workshop on Procedural

Content Generation in Games, 2012.

[7] T. Mahlmann, J. Togelius, and G. Yannakakis.
Towards procedural strategy game generation:
Evolving complementary unit types. Applications of

Evolutionary Computation, pages 93–102, 2011.

[8] A. Martin, A. Lim, S. Colton, and C. Browne.
Evolving 3d buildings for the prototype video game
subversion. Applications of Evolutionary Computation,
pages 111–120, 2010.

[9] A. Pantaleev. In search of patterns: Disrupting rpg
classes through procedural content generation. In The

Third Workshop on Procedural Content Generation in

Games, 2012.

[10] C. Pedersen, J. Togelius, and G. Yannakakis.
Modeling player experience for content creation. IEEE
Transactions on Computational Intelligence and AI in

Games, 2(1):54–67, 2010.

[11] W. L. Raffe, F. Zambetta, and X. Li. Evolving
patch-based terrains for use in video games. In Conf.

Genetic and Evolutionary Computation, pages
363–370, 2011.

[12] N. Shaker, J. Togelius, G. Yannakakis, et al. The 2010
mario ai championship: Level generation track. IEEE
Transactions on Computational Intelligence and AI in

Games, 3(4):332–347, 2011.

[13] A. Smith and M. Mateas. Variations forever: Flexibly
generating rulesets from a sculptable design space of
mini-games. In IEEE Symp. Computational

Intelligence and Games, 2010.

[14] N. Sorenson, P. Pasquier, and S. DiPaola. A generic
approach to challenge modeling for the procedural
creation of video game levels. IEEE Transactions on

Computational Intelligence and AI in Games,
3(3):229–244, 2011.

[15] J. Togelius, M. Preuss, N. Beume, S. Wessing,
J. Hagelback, and G. Yannakakis. Multiobjective
exploration of the starcraft map space. In IEEE Symp.

Computational Intelligence and Games, 2010.

[16] J. Togelius and J. Schmidhuber. An experiment in
automatic game design. In IEEE Symp.

Computational Intelligence and Games, 2008.

[17] J. Togelius, G. Yannakakis, K. Stanley, and
C. Browne. Search-based procedural content
generation: A taxonomy and survey. IEEE
Transactions on Computational Intelligence and AI in

Games, 3(3):172–186, 2011.


