
Interactive Latent Variable Evolution for the Generation of
Minecraft Structures

Tim Merino

tm3477@nyu.edu

New York University Tandon

Brooklyn, New York, USA

M Charity

mlc761@nyu.edu

New York University

Brooklyn, New York, USA

Julian Togelius

julian@togelius.com

New York University Tandon

Brooklyn, New York, USA

ABSTRACT
The open-world sandbox game Minecraft is well-known for apply-

ing a wide array of procedural content generation techniques to

create unique and expansive game environments. However, proce-

durally generated buildings are absent in the Minecraft world, thus

players must build their own structures to flesh out their worlds.

This build process can be extremely time-consuming and appeals

to more creatively-inclined players. To aid players in this process,

we introduce a tool combining interactive evolution with latent

variable evolution to evolve procedurally generated Minecraft struc-

tures to a player’s aesthetic choices. We employ two separate neural

network models to generate structures: a 3D generative model for

generating the structure design and an encoding model for apply-

ing Minecraft textures to the structure’s voxels. We evaluate this

tool with a user study incorporating an online interface that al-

lows participants to select, evolve, and guide a population of these

generated 3D structures towards a specific design goal.

ACM Reference Format:
TimMerino, MCharity, and Julian Togelius. 2023. Interactive Latent Variable

Evolution for the Generation of Minecraft Structures. In Foundations of
Digital Games 2023 (FDG 2023), April 12–14, 2023, Lisbon, Portugal. ACM,

New York, NY, USA, 8 pages. https://doi.org/10.1145/3582437.3587208

1 INTRODUCTION
Minecraft is an open world, 3D voxel-based survival game that

is extremely popular in the gaming, education, and AI research

communities. A core feature of the game is the ability to remove

and place blocks in a 3D voxel grid. With over 1000 unique block

types, players are able to create a variety of structures. While the

game has examples of pre-built structures (shown as an example

in Figure 1), user-built structures are integral to the Minecraft

gameplay experience and can vary in design; from survival homes

to serve as a player’s base of operations, to defensible military bases

for player-vs-player experiences, to immersive fantasy structures

to serve a story narrative.

It can be challenging and time consuming to create interesting

buildings that suit a player’s world or narrative needs. To address

this, the Minecraft community has created websites full of down-

loadable, user-created structures that can be freely shared. These

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

FDG 2023, April 12–14, 2023, Lisbon, Portugal
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-9855-8/23/04. . . $15.00

https://doi.org/10.1145/3582437.3587208

Figure 1: Prebuilt structures in the game Minecraft. These
buildings are used in procedurally generated NPC villages.

structures are typically encoded in a "schematics" file format that

can be used with third party programs to import other player’s

structures into their game world. This approach is limited by the

diversity and number of schematics files other users choose to up-

load, as well as a player’s willingness to search through databases

for a particular structure.

The wide availability of user created structures, as well as the

need to generate assets (in this case, buildings) for player expe-

riences motivates a procedural content generation via machine

learning (PCGML) approach to generating Minecraft structures.

Creating a tool to procedurally generate 3D structures can allow

players and game developers alike to quickly design and implement

structures that fit their building style or gameplay needs. Generated

structures can serve as inspiration or a starting point for players

who prefer the open-ended building aspect of Minecraft. Alterna-

tively, players who care more about gameplay can use this tool to

do the building for them, leaving them to focus on more interesting

parts of the gameplay loop. PCGML for 3D structures can also help

game developers create fully generated worlds. In Minecraft, nearly

every aspect of the game world is procedurally generated, with the

exception of village buildings. An approach for building generation

could allow for an entirely generated game world.

In this paper, we introduce a system
1
capable of generating novel

and aesthetically pleasing structures while reducing the time and

in-game effort needed to build a 3D voxel structure from scratch.

We use interactive latent variable evolution to evaluate the tool’s

capability in generating Minecraft structures that resemble real

in-game buildings and help users guide the evolved population

towards their ideal design.

1
https://github.com/TimMerino1710/Minecraft-Interactive-Evolution

https://doi.org/10.1145/3582437.3587208
https://doi.org/10.1145/3582437.3587208

FDG 2023, April 12–14, 2023, Lisbon, Portugal Merino, et al.

2 BACKGROUND AND RELATEDWORKS
2.1 Generative Models for 3D Content Creation
In the games and AI research community, Minecraft is understand-

ably used as a 3-dimensional generative test domain. Some ap-

plications include creating settlements [12], regenerating designs

[14], generating worlds from a single sample [1], and creating solv-

able mazes [10]. However, these studies do not focus on the proce-

dural generation of Minecraft structures and buildings individually.

Barthet et. al. specifically focus on procedurally generating novel

Minecraft buildings using various autoencoder models [2]. How-

ever, these structures are only evaluated on diversity and novelty

- and not aesthetic design - resulting in more artificial-looking

structures. For our work, we incorporate human design decisions

and aesthetic preferences into the evaluation of the generated 3D

structures.

2.2 Interactive Evolution
Interactive Evolution (IE) involves humans in the evolutionary

search process by having their selections act as the evaluated fit-

ness function - thus guiding the evolved and generated population

towards a desired state [15]. For procedural content generation

in the games and AI community, IE has been used to evolve and

generate race tracks [5], aesthetic game maps using Twitter [6],

and 3d game assets [19].

Interactive Evolution can enable evolutionary search in domains

where a traditional fitness function is difficult to define. In trying to

evolve aesthetic Minecraft buildings, trying to define a measure of

aesthetical appeal is very challenging, as each player will have their

own subjective preferences and criteria. However, a drawback of

IE is user fatigue, which increases with the number of generations.

In the domain of Minecraft, research conducted by Gbric et. al.

with the EvoCraft API evaluated interactive evolution of Minecraft

creations by tasking users to generate "interesting" structures. This

evaluation was completed in the Minecraft engine itself and the

generated structures were designed as abstract shapes, rather than

habitable structures that a player might build. The authors also

note that the generation and evolution time for the experiment was

a concern that could lead to user fatigue and therefore decided to

stick with the simplest IE strategy [8].

While this research was influential in our system, we sought to

be more accessible to users and not require interfacing with the

Minecraft engine itself. We also prioritized obtaining results in as

few generations as possible to avoid user fatigue during the study.

Rather than abstract structures, our goal to generate samples that

look like they could be built by a player in Minecraft, and could

function as a home or to anchor a game narrative.

2.3 Latent Variable Evolution
Deep Interactive Evolution using Latent Variable Evolution (LVE) in-

volves mutating and evolving a population of vectors that is passed

through a deep neural network to create new samples. Combined

with IE, Latent Variable Evolution allows controllable evolution of

generated samples. Bontrager et al. introduces and demonstrates

its effectiveness in generating images [4]. Schrum et al. experiment

with using Interactive Latent Variable Evolution (ILVE) to evolve

Figure 2: A diagram of the preprocessing and training steps
for the generative and painter models.

generated levels for tile based 2D video games, The Legend of Zelda

and Super Mario Bros [13]. Thakkar et al. use LVE with an autoen-

coder generative model to generate levels for the game Loderunner

[16]. Volz et al. use LVE with a Generative Adversarial Network to

evolve levels for Super Mario Bros [17]. However, there has yet to

be an application of ILVE to 3D domains, as LVE for video game

content generation is mostly done in the space of 2-dimensional

games. Motivated by the success of Latent Variable Evolution for

PCG in the level design space, we aim to expand to the domain to

3-dimensional games with Minecraft.

3 METHODS
3.1 System Description
Unlike other 3D generators, the generation process for this system is

made up of 2 separate neural network models, which serve different

purposes. The first model, a generative model referred to as the

"Generator," aims to create structures out of a single block type

that resembles the structural design of the training data. For this

model, we chose a Generative Adversarial Network (GAN). Previous

research has shown that GANs are capable of generating binary

3D voxel models that closely resemble training data [18].

The second model, referred to as the "Painter", aims to turn a

binary structure into a structure composed of Minecraft blocks. We

trained a 3D Convolutional Neural Network (CNN) to accomplish

this task. For each Minecraft structure, a binary structure is gener-

ated by converting all non-empty blocks to 1, and empty blocks to

0. We then train the Painter in a supervised setting, using pairs of

binary and original structures. The model tries to "paint" the binary

structure to be identical to the original structure. Our goal with this

model is to learn the aesthetic styles of existing Minecraft struc-

tures, and apply them realistically new binary structures created

by the Generator.

Bothmodels work together to generate a structure usingMinecraft

blocks from a random latent vector. First, the Generator transforms

the vector into a binary structure. Then, that output is fed through

the Painter network to introduce the different block types present

in the game. The output of the painter model can then be viewed

by the user. This represents the genotype-to-phenotype mapping

used in our Evolutionary Strategy.

For the Interactive Evolution system, users evolve structures in

an online interface by selecting from a population of structures

created from this generative pipeline. New latent vectors for the

population are evolved using crossover and mutation operators on

Interactive Latent Variable Evolution for the Generation of Minecraft Structures FDG 2023, April 12–14, 2023, Lisbon, Portugal

selected latent vectors. These vectors are then passed through the

pipeline again to create a new population. The following sections

go into further detail for each individual step of the generation and

evolution process.

3.2 Dataset and Preprocessing
3.2.1 Extraction. We aimed for a dataset of buildings that were

relatively simple in style (i.e, not containing overly complicated

shapes like spirals, and generally looked like a "house"). We limited

our generated structure size to a maximum of 16
3
blocks, and only

selected structures contained within that size for our training data.

We used in-gameMinecraft structures — structures used for NPC

villages (Figure 1) — as our "ideal structure design" to optimize our

generative models towards. They are generally simple structures,

meant to be homes and workplaces of in-game NPC characters, but

also have diverse styles based on terrain biome. Based on our initial

size and style constraints, we were only able to extract a total of

128 in-game houses for the system’s training dataset.

Finding data on third-party sites that fit our criteria proved too

time consuming. The range for structural designs was too complex,

and many structures were too large for our 16
3
size limit. To ob-

tain more data, we added the CraftAssist house dataset - a crowd

sourced dataset of 2586 Minecraft houses, which were built by users

within a 30 minute time window, with no additional constraints

[7]. The unrestricted nature of this data allows us to capture more

natural human creativity, which we aim to mimic with our research.

In contrast, the in-game Minecraft structures were built by game

developers to fit in with the base game’s aesthetics. We manually

assessed these CraftAssist structures to remove any bad data: empty

builds, collections of random blocks, overly simple or ’cubic’ struc-

tures, or “joke" builds such as humanoid figures. Removing these

structures and applying our previous constraints left us with 219

suitable structures from the CraftAssist dataset.

3.2.2 Preprocessing. We represent each Minecraft structure using

a 3D array of one-hot encoded vectors, where each index represents

a block texture. To reduce the dimensionality of our data from the

1000+ possible Minecraft textures, we compressed the structures to

use a smaller number of block types.We aimed to have enough block

types to achieve aesthetic diversity in our builds while significantly

decreasing our data size.

For our final models, we use 5 different block types: “Air”, “Stone”,

“Dirt”, “Wood”, and “Slab”. We chose to ignore special condition

blocks such as “half” size blocks and blocks with varying orien-

tations such as “stair” blocks by compressing them into the “Slab”

texture. This compressed representation becomes our "categorical

dataset," while a binarized form becomes the "binary dataset". In

the binary dataset, all air blocks are represented by 0, while non-air

blocks are represented by 1. Through this compression scheme,

many block types were deleted from structures and replaced with

air. This led to some structures with "floating" blocks. To remove

these, a 26-neighbor connected component algorithm was used on

each structure, and only the largest connected component was kept.

3.2.3 Dataset Augmentation. To compensate for the relatively small

dataset of only 379 unique structures, we used various augmenta-

tion strategies for both the Generator and Painter Model datasets.

Figure 3: Effects of subtractive noise augmentation. From
left to right: binary structure, painter without noise, painter
with 30% subtractive noise, highlighted additions from #1 to
#3

For the Generator dataset, we combined multiple augmentation

strategies: rotation about the vertical axis, stretching the structure

along one or multiple axes, transposition across the X-Y plane, and

voxel noise. The dataset was also up-sampled to a size of 64
3
blocks,

which resulted in much more stable performance and realistic out-

puts by our generative models. Our best performing Generator was

trained on a dataset of in-game houses with transposition and ro-

tation augmentations. Although generators trained on a stretched

dataset were able to learn to create "longhouse" and "tower" shaped

structures, the overall realism of the builds was diminished.

We noticed during preliminary experiments that the majority

of the structures output by our generative model appeared to be

missing blocks. Inspired by masked autoencoders, we added a "sub-

tractive noise" augmentation to the Painter model’s dataset. This

was performed by randomly removing a percentage of non-air

blocks from the binary training data, while leaving the "true" data

(the textured structures) untouched. This augmentation gave the

Painter a dual goal: to paint the house, and to repair it by fixing

"holes" where it learned was appropriate. Figure 3 depicts some of

the repairs made by the augmented Painter models, such as adding

blocks to complete a sloped roof, or creating a 2-block tall door-

way. We found that 30% removal gave the best performance, and

led to a noticeable improvement in the perceived quality versus

non-augmented Painter models.

3.3 Generative Structure Model
For our generator model, we used a Generative Adversarial Net-

work, with similar architecture to the 3D-GAN model used by Wu

et al. [18]. Rather than a standard 3D-GAN, we used a Wasserstein

GAN with Gradient Penalty (WGAN-GP). WGAN-GP is a state-

of-the-art GAN technique utilizing the Wasserstein distance as a

loss function, as well as a gradient penalty term to constrain the

critic (discriminator) network function to be 1-Lipshitz. In prac-

tice, WGAN-GPs seem to offer better convergence than a standard

WGAN[9], and have been shown to work with LVE[4]. We found

that a WGAN-GP outperformed 3D-GANs and standard WGANs

on our dataset.

The generatormodel was trained on the in-game binary structure

dataset. Our best performingWGAN-GPmodel was trained for 3000

epochs, with batch size 32 and latent vector size 200. The Critic

network consists of four 3D convolutional layers with kernel size

4. Downsampling is performed each layer via striding. Leaky Relu

activation layers follow every convolution layer.

Our Generator network consists of 4 3D convolutional layers

with kernel size 4, each followed by a 3D upsampling layer. Relu

activation functions and batch normalization layers follow every

FDG 2023, April 12–14, 2023, Lisbon, Portugal Merino, et al.

Figure 4: Architecture diagram of the Generator portion of
the WGAN-GP network. The critic network is mirrored in
layers and filters

convolution. Batch normalization is purposefully omitted from the

critic network to avoid issues specific to WGAN-GPs. We train the

critic 5 times for every 1 generator update, following the original

WGAN-GP paper[9]. We use a RMSProp optimizer with a learning

rate of 8e-5 for both networks.

Thoughwe hoped aWGAN-GP trained on categorical data would

be able to generate realistic Minecraft structures, attempts to train

one were unsuccessful. However, models trained on binary data

weremuchmore successful in capturing the structure of the training

data. This motivated the dual model approach, using a secondmodel

to reintroduce block variety into the generated data.

3.4 Painter Model
The Painter model was trained on a categorical dataset of both

in-game and Craftassist structures. We chose a 3D Convolutional

Neural Network consisting of four 3D convolutional layers. The

first 3 layers are followed by dropout layers, with dropout rate = 0.3.

Our best painter model was trained for 500 epochs, with a batch

size 64, using categorical cross entropy loss and an Adam optimizer.

The output of the Painter model is a one-hot encoded representa-

tion of the input structure (size = 16
3 ∗ 𝑛, where n is the number of

possible texture blocks). Figure 5 demonstrates the training pipeline

for the painter model with architecture details.

Figure 5: Architecture diagram of the Painter Model with
the binary form of the house as the input and the textured
output of the same house.

Combined with the generator model, the painter model can

produce a structure with a variety of block types that are placed in

positions that are similar to the real Minecraft and human-authored

structures (i.e. using wood-like textures for “roof” blocks, and stone-

like textures for “wall” blocks), This process also splits the training

workload and learning curve for the generator model.

It is important to note that the output of the Painter model

represents the final phenotype, the structure to be evaluated. How-

ever, this split training process does not learn a direct genotype-

to-phenotype mapping. This means that while small latent vector

mutations cause small changes in the structure of a building, they

may have more dramatic changes in the "style" of the building.

We tested other architectures for Painter models, such as autoen-

coders, CNNs with different kernel sizes, and different layers such

as attention, layer normalization, and squeeze-and-excite convolu-

tional layers. However, this simple CNN architecture had the best

aesthetic result on the generated houses, and was therefore used as

the Painter for the experiment.

3.5 Structure Rendering
Previous works involving Minecraft-based PCG systems have used

the actual game of Minecraft as render system verification for their

generation outputs [7, 10, 12]. However, to maximize accessibility

to users who may not have access to the game, we needed a system

that did not require the game’s engine to render a given structure.

As such, we created an open-source Javascript interface called

VoxWorldJS
2
that allows for quick rendering of structures from 3D

integer arrays using Minecraft textures. The structures are rendered

using the Three.js library and allows rapid exporting of structures

as PNG images or rotating GIFs via NodeJS libraries. This method

speeds up the rendering process and visual output for the user, and

allows the generated structures to be rendered browser-side with

multiple camera angles without the need for a player navigating

the 3d space in the Minecraft game engine.

3.6 Online Interactive Evolution
Users can interact with the system online and evolve a population

of generated structures directly from the pipeline. The website
3
is

hosted on an Amazon Web Services server and uses a Flask library

setup to communicate between the Python-based neural networks,

Javascript-based structure rendering, and the user’s real-time input.

Users can hover their mouse pointer over the generated structure

images to see a GIF of the structure rotating around the vertical

axis.

The evolutionary process uses a genetic search evolutionary

algorithm, with the latent vectors as the "genotype," and the corre-

sponding generated structure as the "phenotype". We use mutation

and crossover operations on the latent vectors as our genetic op-

erators. Selection is done entirely via user selection; only selected

houses are used for the next generation as "parent" vectors. We use

a population size of six for all generations.

Each vector in the starting population is a Gaussian random

vector ®𝑋 = (𝑋1, ..., 𝑋200), 𝑋𝑖 ∼ N(0, 1) — identical to the distri-

bution of latent variables used during GAN training. Mutation is

done by adding random noise vectors to the copies of the parent

latent vector. The noise vectors are also Gaussian random vectors,

®𝑍𝑛𝑜𝑖𝑠𝑒 = (𝑍1, ..., 𝑍200), 𝑍𝑖 ∼ N(0, 0.3). Crossover is done by first

averaging all parent vectors into ®𝑋𝑎𝑣𝑔 , then applying the same mu-

tation process to four copies of ®𝑋𝑎𝑣𝑔 . Additionaly, one parent vector

is selected to remain unchanged in the next population, and one

new latent vector is generated to add diversity. The value 𝜎 = 0.3

for the noise vectors was determined through experimentation and

subjective evaluation of the evolution process. We sought a balance

between user fatigue and stability of evolution, where the change

2
https://github.com/MasterMilkX/VoxWorldJS/

3
http://www.minecraft-house-evolver.xyz/

Interactive Latent Variable Evolution for the Generation of Minecraft Structures FDG 2023, April 12–14, 2023, Lisbon, Portugal

Figure 6: A diagram of the interactive evolution pipeline.

Figure 7: The Minecraft Interactive Evolution study website.

between generations would be dramatic enough to reach a target

evolution goal within a few generations, but small enough that

each member of the new population seems like a natural evolution

from the selected parent(s).

The size of the evolved population is limited to six to reduce user-

end wait time for generating, painting, and rendering each structure.

The average wait time for six structures takes 25 seconds. Users

can also export the 3D integer array of a generated structure as

raw text for use in other systems (such as the VoxWorldJS system.)

Figure 7 shows a screenshot of the interactive evolution website.

4 USER STUDY
Auser studywas performed to collect information about user design

choices, and evaluate the efficacy of the system and the interactive

evolver. This study was modeled after the interactive LVE experi-

ment performed by Bontrager et. al. [4] and the Minecraft structure

generation experiment by Grbic et. al. [8]. Participants volunteered

to answer questions on a Google Form about their experience with

the system.

Demographic questions were presented first to gather insight

into each user’s general design style. These included questions

about the users’ ages, experiences playing 3D voxel-based and

sandbox games, and using interactive evolvers. These questions

allowed us to gauge how familiar particpants were with Minecraft

and the aesthetics of Minecraft structures, as well as their overall

experience level with AI-assisted interfaces.

Similar to the IE experiments in Evocraft, we tasked users with

completing two different evolution experiments using the system.

The first task was a guided evolution: users were asked to select

1 of 3 design descriptions, then evolve a structure until it reached

that design goal. The 3 options for design were: ’A house with a

door and a window’, ’A tower (approximately 8 blocks high)’, or

’Two separate houses in a single sample’. This aimed to measure

how effective the system would be for a user who already had an

idea of what they wanted to build.

The second task was an open ended evolution. Users were asked

to evolve a structure of any design they wanted, then write a text

description of their generated structure. This experiment aimed to

gauge human creative preferences, as well as explore the variety of

structures our model were capable of producing.

In both experiments, users reported the number of generations

needed to reach their goal. This gave insight into user fatigue,

an important consideration in any human-in-the-loop system and

a primary motivation behind our ILVE approach. Finally, users

were asked to rate their experience using a five point Likert scale,

representing their agreement with 12 provided statements (Figure

1). An optional free response section was included for comments

and criticisms.

5 RESULTS
We released the study online over the authors’ social groups such

as Twitter, Discord, and Slack. Over the course of five days, we

received 25 responses. The study took an average of 10 minutes to

complete, which included learning to use the interactive system

and answering questions on the form. No sensitive or identifying

information was required to be provided by users.

5.1 Demographic Information
The self-reported ages of the users were between 14-35 years of

age, with a strong median of users of aged 26. A large portion of

users (40%) reported preference for goal-oriented tasks over open-

ended tasks, and 52% of users said that they enjoyed both tasks

equally. Many users (60%) had used an AI-assisted generation tool

(i.e. DreamFusion, ChatGPT, Picbreeder) before the experiment and

were familiar with online AI generators.

All participants reported playing video games on a weekly basis,

with more than 84% reporting that they played for 2 or more hours

a week. 92% of users had played a sandbox game (games involving

crafting, designing, or open-ended gameplay), while only 64% had

specifically played Minecraft. Of that 64%, we asked users what

style of gameplay persona they identify most with. The possible

personas are inspired by Bartle’s Taxonomy of Player Types[3],

but were specifically catered for Minecraft: Builders, Explorers,

Fighters, and Achievers. Half of the participants in this subgroup

identified most with the ‘Builders’ persona.

5.2 House Generation
Figure 8 shows some generated houses submitted by participants

for the first task (goal-oriented generation). 72% of users chose to

evolve a house with a door and window — most likely because

the generator’s default structure output were house designs. 24%

of users chose to design towers, and a single respondent chose

FDG 2023, April 12–14, 2023, Lisbon, Portugal Merino, et al.

Figure 8: Goal-oriented houses evolved by participants. a,b)
’A house with a door and a window’, c) ’A tower’ and d) ’Two
separate houses’

Figure 9: Open-ended houses evolved by participants labeled
a) ’a more expensive house’ b) ’a tower with a cloud idk’ c) ’A
Mario game level’ and d) ’A single block!’

Figure 10: Results from the Likert-scale user experience ques-
tions.

to evolve two separate structures. We found that the majority of

user-generated structures achieved the design goals described in

their selected prompt. We consider this a success for the guided

evolution aspect of our system.

Figure 9 shows some sample houses submitted by participants

for the second task (open ended generation). Many users still chose

to evolve a structure similar to the ones prompted from the pre-

vious task (houses and towers.) However, a few participants were

extremely creative, either in description or ending structure. Some

participants tried to make the most “chaotic” structures possible.

Others gave very thorough descriptions of their structures such as

“A fortress with stone foundation and roof”. The majority of users

were able to reach their goal in under 10 generations (64% for task

1, 72% for task 2).

5.3 User Experience Rating and Response
After completing the 2 tasks for structure generation, users were

asked to complete a survey of about their experience using a Likert-

scale format. Table 1 shows the list of statements given to partic-

ipants. Q1-Q4 evaluate the usability and intuitiveness of the IE

system. Q5-Q9 evaluate the output of the generator pipeline and

gauge user satisfaction with evolution tasks. Q10-12 evaluate long-

term satisfaction of the IE system and other AI-assisted design

tools.

Users were in agreement with most statements concerning the

aspects of the system. The statements pertaining to the generator

pipeline had the most lukewarm reception. Most users were am-

bivalent in satisfaction to the generator’s structure output (Q5),

the painter’s texture output (Q6), and how their selections were

reflected in the output of the next generation (Q7.) To improve this,

we will look to evaluating each model individually to further refine

the output and make a more cohesive system.

Only 36% of users reported that they would like to use the system

again (Q10.), though many agreed that generating the structures

using this PCG method was faster than designing a house from

scratch in Minecraft (Q8), and that the generated houses were novel

and interesting (Q9.)

Conversely, users were especially satisfied with the GIF rotation

images for their house selections, with 84% reporting ’Agree’ or

’Strongly Agree’ to Q3. Users also reported especially positive expe-

riences for the long-term AI assisted question. 72% of participants

were interested in ’creating procedurally generated 3d objects’ (Q11)

and almost 100% of participants reported ’Agree’ or ’Strongly Agree’

to being interested in using more interactive evolution tools for

creative tasks (Q12.) Overall, users were enthusiastic to use more

AI-assisted tools in the future for design and construction focused

tasks — especially in a 3-dimensional domain.

Participants had the option of providing comments and criticisms

they had about the system. As indicated by the ratings of the survey,

a few users had difficulty understanding the UI of the system -

particularly the difference between the ’Save’ and ’Evolve’ modes

of the system. However, some users mentioned that the ’Help’ menu

we included to demonstrate how to use the system alleviated some

of this confusion. Other users mentioned their disappointment with

some of the generated outputs — mostly concerning the painter

model’s texture placements — noting as a recurring theme that they

would “generate in places a human user would not be likely to place

it for aesthetic purposes.” Nonetheless, users reported an overall

interest in the generation process and would like to see ‘more

variant structure types’ and others were interested in ‘[creating]

really weird structures.’

6 FUTUREWORK
To generate structures that truly feel like they belong in Minecraft,

a wider range of blocks is needed. Further experiments can be done

using higher-dimensional data. While compressing our datasets led

to much better performance by our models, this represents only a

small fraction of the 1000+ block types present in Minecraft. Our

compression method also requires manual mapping of each block

to a compressed category. Using a one-hot representation for each

voxel led to sparsity, which scaled with the number of block types

Interactive Latent Variable Evolution for the Generation of Minecraft Structures FDG 2023, April 12–14, 2023, Lisbon, Portugal

Statement

Q1 I found the system intuitive and easy to use

Q2 The number of houses shown is satisfactory (not too many and not too few)

Q3 The GIF rotations of the houses were helpful in my selection process

Q4 The time it takes the model to generate new houses is reasonable

Q5 I am satisfied with the structural output of the generated houses

Q6 I am satisfied with the texture designs of the generated houses

Q7 I am satisfied with how my selections were reflected in the output of the next generation

Q8 Evolving the set of 6 different houses is faster than designing and constructing 6 houses from scratch in a 3d environment such as Minecraft

Q9 The generated houses are interesting and novel

Q10 I would use this system again in the future

Q11 I am interested in creating procedurally generated 3d objects.

Q12 I am interested in using more interactive evolution tools like this in the future for building designs either in video games or in other creative mediums.

Table 1: Table of statements used in the Likert-scale experience reporting of the survey.

being represented. It may be possible to avoid sparsity issues while

increasing the number of represented block types via advanced

feature processing methods. One such method is the block2vec
token embedding used by Awiszus et al.[1].

One interesting area of research concerns the latent space of gen-

erative models such as GANs or autoencoders. Previous research

has demonstrated the power of latent vector arithmetic within the

latent space of a GAN [11]. It may be possible to isolate meaning-

ful "attribute vectors" within the latent space of our generator (i.e.

vectors that control the height or width of structures). These at-

tribute vectors could be used to give users more control, and guide

evolution in intuitive ways. We experimented with using interpola-

tions between latent vectors as a way to measure the performance

of our GANs, looking for "smooth" transitional structures at var-

ious points between 2 vectors. Our GANs were consistently able

to interpolate smoothly between generated buildings, "morphing"

from one building to another. Incorporating interpolations between

members of a population can give a user more control than our

current crossover mutation method does.

Although we had moderate success with this binary generator

to categorical painter pipeline, for future work, we would like to

develop a generator model capable of directly generating categor-

ical structures. Preliminary results with this type of model were

unsuccessful, mostly due to computational constraints, as the num-

ber of parameters in the network scaled with the dimension of the

training data. Increasing both the depth of the GAN networks and

the number of filters present in each convolutional layer may be

the key to a successful categorical generative model.

7 CONCLUSION
This paper introduces a novel PCGmethod for generating structures

within the game Minecraft by combining existing 3D voxel genera-

tive models with a binary-to-categorical transformation network.

Using this pipeline, we demonstrate the ability to generate coher-

ent structures in a higher-dimensional space. We also explore the

use of Interactive Latent Variable Evolution within the generated

structure space. Though Minecraft is very well known, this system

is not intended to be limited to the Minecraft engine. We hope this

system allows for more work to be done involving interactively

evolved content generation systems in 3D domains.

REFERENCES
[1] Maren Awiszus, Frederik Schubert, and Bodo Rosenhahn. 2021. World-gan: a

generative model for minecraft worlds. In 2021 IEEE Conference on Games (CoG).
IEEE, 1–8.

[2] Matthew Barthet, Antonios Liapis, and Georgios N Yannakakis. 2022. Open-

ended evolution for Minecraft building generation. IEEE Transactions on Games
(2022).

[3] Richard Bartle. 1996. Hearts, clubs, diamonds, spades: Players who suit MUDs.

Journal of MUD research 1, 1 (1996), 19.

[4] Philip Bontrager, Wending Lin, Julian Togelius, and Sebastian Risi. 2018. Deep

Interactive Evolution. In Computational Intelligence in Music, Sound, Art and
Design - 7th International Conference, EvoMUSART 2018, Parma, Italy, April 4-6,
2018, Proceedings (Lecture Notes in Computer Science, Vol. 10783), Antonios Liapis,
Juan Jesús Romero Cardalda, and Anikó Ekárt (Eds.). Springer, 267–282.

[5] Luigi Cardamone, Daniele Loiacono, and Pier Luca Lanzi. 2011. Interactive

evolution for the procedural generation of tracks in a high-end racing game. In

Proceedings of the 13th annual conference on Genetic and evolutionary computation.
395–402.

[6] M Charity and Julian Togelius. 2022. Aesthetic Bot: Interactively Evolving Game

Maps on Twitter. In Proceedings of the AAAI Conference on Artificial Intelligence
and Interactive Digital Entertainment, Vol. 18. 18–25.

[7] Jonathan Gray, Kavya Srinet, Yacine Jernite, Haonan Yu, Zhuoyuan Chen, Demi

Guo, Siddharth Goyal, C Lawrence Zitnick, and Arthur Szlam. 2019. Craftas-

sist: A framework for dialogue-enabled interactive agents. arXiv preprint
arXiv:1907.08584 (2019).

[8] Djordje Grbic, Rasmus Berg Palm, Elias Najarro, Claire Glanois, and Sebastian

Risi. 2021. EvoCraft: A New Challenge for Open-Endedness. Springer-Verlag,

Berlin, Heidelberg.

[9] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron

Courville. 2017. Improved Training of Wasserstein GANs.

[10] Zehua Jiang, Sam Earle, Michael Green, and Julian Togelius. 2022. Learning Con-

trollable 3D Level Generators. In Proceedings of the 17th International Conference
on the Foundations of Digital Games. 1–9.

[11] Alec Radford, Luke Metz, and Soumith Chintala. 2015. Unsupervised Repre-

sentation Learning with Deep Convolutional Generative Adversarial Networks.

https://doi.org/10.48550/ARXIV.1511.06434

[12] Christoph Salge, Michael Cerny Green, Rodgrigo Canaan, and Julian Togelius.

2018. Generative design in minecraft (gdmc) settlement generation competition.

In Proceedings of the 13th International Conference on the Foundations of Digital
Games. 1–10.

[13] Jacob Schrum, Jake Gutierrez, Vanessa Volz, Jialin Liu, Simon Lucas, and Sebas-

tian Risi. 2020. Interactive evolution and exploration within latent level-design

space of generative adversarial networks. In Proceedings of the 2020 Genetic and
Evolutionary Computation Conference. 148–156.

[14] Shyam Sudhakaran, Djordje Grbic, Siyan Li, Adam Katona, Elias Najarro, Claire

Glanois, and Sebastian Risi. 2021. Growing 3d artefacts and functional machines

with neural cellular automata. arXiv preprint arXiv:2103.08737 (2021).

[15] Hideyuki Takagi. 2001. Interactive evolutionary computation: Fusion of the

capabilities of EC optimization and human evaluation. Proc. IEEE 89, 9 (2001),

1275–1296.

[16] Sarjak Thakkar, Changxing Cao, Lifan Wang, Tae Jong Choi, and Julian Togelius.

2019. Autoencoder and Evolutionary Algorithm for Level Generation in Lode

Runner. In 2019 IEEE Conference on Games (CoG). 1–4.
[17] Vanessa Volz, Jacob Schrum, Jialin Liu, Simon M. Lucas, Adam Smith, and Sebas-

tian Risi. 2018. EvolvingMario Levels in the Latent Space of a Deep Convolutional

Generative Adversarial Network. Association for Computing Machinery, New

https://doi.org/10.48550/ARXIV.1511.06434

FDG 2023, April 12–14, 2023, Lisbon, Portugal Merino, et al.

York, NY, USA.

[18] Jiajun Wu, Chengkai Zhang, Tianfan Xue, William T. Freeman, and Joshua B.

Tenenbaum. 2016. Learning a Probabilistic Latent Space of Object Shapes via

3D Generative-Adversarial Modeling. In Proceedings of the 30th International
Conference on Neural Information Processing Systems. Curran Associates Inc., Red

Hook, NY, USA, 82–90.

[19] Du-Mim Yoon and Kyung-Joong Kim. 2013. Interactive Evolution of 3D Models

based on Direct Manipulation for Video Games. Procedia Computer Science 24
(2013), 137–142.

	Abstract
	1 Introduction
	2 Background and Related Works
	2.1 Generative Models for 3D Content Creation
	2.2 Interactive Evolution
	2.3 Latent Variable Evolution

	3 Methods
	3.1 System Description
	3.2 Dataset and Preprocessing
	3.3 Generative Structure Model
	3.4 Painter Model
	3.5 Structure Rendering
	3.6 Online Interactive Evolution

	4 User Study
	5 Results
	5.1 Demographic Information
	5.2 House Generation
	5.3 User Experience Rating and Response

	6 Future Work
	7 Conclusion
	References

