
Evolving Maps and Decks for Ticket to Ride
Fernando de Mesentier Silva

New York University
Brooklyn, NY

fernandomsilva@nyu.edu

Scott Lee
New York University

Brooklyn, NY
sl3998@nyu.edu

Julian Togelius
New York University

Brooklyn, NY
togelius@nyu.edu

Andy Nealen
New York University

Brooklyn, NY
nealen@nyu.edu

ABSTRACT
We present a search-based approach to generating boards and decks
of cards for the game Ticket to Ride. Our evolutionary algorithm
searches for boards that allow for a well-shaped game arc, and for
decks that promote an equal distribution of desirability for cities.
We show examples of two boards generated by our algorithm and
compare our results to those of the actual components of the game.
Our approach creates game content that is specifically designed
towards metrics that can affect gameplay in an impactful way.

CCS CONCEPTS
• Mathematics of computing → Evolutionary algorithms; •
Applied computing → Computer games;

KEYWORDS
Procedural Content Generation, Board Games, Evolutionary Algo-
rithm
ACM Reference Format:
Fernando de Mesentier Silva, Scott Lee, Julian Togelius, and Andy Nealen.
2018. Evolving Maps and Decks for Ticket to Ride. In Foundations of Digital
Games 2018 (FDG18), August 7–10, 2018, Malmö, Sweden. ACM, New York,
NY, USA, 7 pages. https://doi.org/10.1145/3235765.3235813

1 INTRODUCTION
Many popular board games eventually spawn some variant, expan-
sion or derivative work which modifies the original in some way.
In some cases, these changes are insignificant or purely aesthetic
as is the case in Monopoly: Electronic Banking Edition [8]. Other
variants add or modify aspects of play in complex ways, such as in
Pandemic: Reign of Cthulhu [18]. Players are often found to prefer
one variant over another, often citing balance or a more enjoyable
game arc.

While the differences between variants of the same board game
are typically well-defined on the mechanics level, it is not obvious

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
FDG18, August 7–10, 2018, Malmö, Sweden
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6571-0/18/08.
https://doi.org/10.1145/3235765.3235813

how they differ on a dynamics level, and how to measure it. Balance
is difficult to bind to a single number, as is game flow. Traditional
playtesting offers a way to measure these metrics for games, but it
can be expensive, time-consuming, and ultimately imprecise. It may
be possible to automate the playtesting process, but that presents
its own set of challenges.

Certain aspects of a game experience can be expressed as a set
of numerical properties and factors, upon which a designer could
tune and optimize. While the correlation between these factors and
perceived quality is debatable, a systematic way to maximize and
minimize selected properties of a game at will is nonetheless useful.

A method to automatically generate quality content would be a
powerful tool for designers to have. This work tackles the challenge
of evolving content for a multiplayer game that contains elements
of stochasticity and hidden information. Our algorithm leverages
different metrics based on the type of content it is trying to gen-
erate. However, both metrics were selected following very strong
indications that they were clearly linked to those game pieces and
that optimizing them can have significant impact on quality of
gameplay. We showcase content that our algorithm generated and
compare and analyze it with respect to the results extracted from
released versions of the game.

2 RELATEDWORK
Procedural content generation (PCG) is by now commonplace in
video games, and there is a whole research field devoted to finding
better (by various criteria) content generation methods [15]. Con-
tent has been generated for a large variety of content types and
game genres, including platform game levels [10], strategy game
maps [16], weapons in space shooters [9] and even flowers [14].
A popular approach is search-based PCG, where an evolutionary
algorithm or other stochastic search algorithm is used to find good
game content [17].

Within board games and card games, there is less work on con-
tent generation, despite the great potential for generation in such
games. A prominent exception is the work of Cameron Browne
on generating completely new board games [1]; in a similar vein,
there has been work on generating rules for card games [7]. PCG
can also be used to balance card games, for example by generating
card decks that balance players in Dominion [13].

All search-based PCG methods rely on evaluation functions that
quantify some aspect of the quality of the content artifact. Many
such evaluation functions are simulation-based, where an agent

https://doi.org/10.1145/3235765.3235813
https://doi.org/10.1145/3235765.3235813


FDG18, August 7–10, 2018, Malmö, Sweden De Mesentier Silva et al.

plays through the content. Measuring content quality is in general
a very hard problem, and successful solutions generally rely on
reductive or approximate solutions. Browne et. al developed a crit-
icism method for measuring quality in combinatorial games [1],
having hidden information and non-deterministic elements. How-
ever, our approach of utilizing the game arc for evaluating the most
fit content does share connections with some of the aspects of their
evolution of design. The game arc, which we describe in the sections
bellow, has ties to game depth [11] and to the skill ladder [3].

3 TICKET TO RIDE
Ticket to Ride is a 2 to 5 player board game released in 2004 [2].
In it, players collect resources and spend them to claim different
train routes on a map to gain points. The goal of the game is to
acquire more points than the other players. The game has been
very successful commercially, selling over 3 million copies as of
2014. This success paved the way for over 15 expansions and new
titles released for the series, spawning new boards, variants, card
games and etc.

A traditional game of Ticket to Ride is composed of a board,
typically based on a real-world location, representing the map
composed of cities and train routes connecting them, a deck of
train cards, the collectible resource that players need to claim train
routes, a deck of destination cards, representing objectives that
players complete in secret through the game to obtain additional
points, and an individual pool of train tokens for each player that
is used to mark claimed routes. The game ends once a player has
exhausted their pool of train tokens.

On the board, multiple cities are represented and connected
between different train routes. The train routes are the primary
resource of the game. Players claim routes by spending the appro-
priate train cards and placing their train tokens to signify that a
route has been claimed. The core of the gameplay comes from when
a player chooses to claim a route. Once a route has been claimed by
a player, no one else can use it. Routes have two attributes: color,
which defines the type of train card needed to claim it, and size,
which define how many of the same resource is needed to claim it.

In addition to planning around routes, players must also plan for
their destination cards. Destination cards act as additional objectives
for the players that hold them. They display two cities that the
player must connect by claiming routes in between them. At the end
of the game, players are rewarded or penalized based on whether
or not they were able to complete these objectives. These cities
are usually not adjacent, requiring multiple routes to be connected.
Cards with cities that are farther apart are typically worth more
points, but also present greater risk. Each card that is not completed
by the end of the game penalizes the player by subtracting the same
amount of points that would be won for completing it.

A match is played over several rounds, with players alternating
turns. Every turn a player takes one of three possible actions: draw-
ing new train cards, drawing new destination cards or claiming a
route on the board. The end of the game is reached once any player
ends their turn with 2 or less train tokens. At this point, each player
gets one more turn. The game is then over and points are tallied.

4 SIMULATING THE GAME
We chose to evaluate the generated content with a large number of
simulations. These simulations require access to a game engine, as
well as a set of agents.

The game engine was intended to replicate the standard version
of the game. The engine was optimized to run simulations quickly
to enable high-volume simulations.

For the gameplaying agents we implemented 4 handcrafted
heuristic-based agents, designed specifically to play Ticket to Ride.
Each agent utilizes a different strategy, with varying levels of suc-
cess. Our agents are based on those used by Silva et al. to evaluate
components of Ticket to Ride [4, 5]. The decision to use handcrafted
agents is due in large part to the nature of the game. The space of
available moves in a turn can be quite large, sometimes reaching
above 100 different possibilities, with the average above 60. In addi-
tion, stochasticity and hidden information play a significant role
in gameplay. Destination cards and train cards are drawn from a
shuffled deck and players keep their both their train and destina-
tion cards hidden from the other players until the game is over. For
these reasons the game can be very challenging for search-driven
approaches.

5 BOARD GRAPH AND BRANCHING FACTOR

Figure 1: A completely new board generated by our algo-
rithm. The nodes given as the initial inputs were the capi-
tals of the 26 states of Brazil. In the image, nodes/cities are
represented by the circles and routes are the dashed lines
connecting any 2 nodes. The size of the route is equal to the
number of dashes that compose it. The color of the dashes
matches the color of the route.

Arguably the main component of Ticket to Ride, board design is
largely responsible for steering gameplay. It is the most differen-
tiable element between versions of the game and the main source



Evolving Maps and Decks for Ticket to Ride FDG18, August 7–10, 2018, Malmö, Sweden

of interaction between players. Small changes to the features of the
map represented in the board can have large effects on the flow of
the game. For these reasons, generating a new board for Ticket to
Ride is the most delicate and complex component we are generating
in this work. Figure 1 shows a board generated by our algorithm.

The board can be represented as a graph: the cities are nodes
and routes are edges. Cities are relevant in terms of their positions
in relation to each other on the board and can be distinguished by
their names. Routes have 2 major features in terms of gameplay:
size (to which we can refer to as edge weight) and color. In existing
versions of the game, route size is mainly kept between 1 and 6,
although a small handful of titles feature larger routes. For the
purpose of this work, we will not attribute sizes larger than 6 to
any routes we generate. In terms of route color there are 8 possible
regular colors in Ticket to Ride, which correspond to the colors
train cards can take. To claim a colored route, a number of cards of
the appropriate color must be discarded. There is also 1 extra route
color, gray, which can be claimed with train cards of any color, so
long as all cards are of the same color.

The problem of generating a board for Ticket to Ride is then a
problem of populating a graph with nodes and connecting these
nodes with edges that have color and weight. There is also a set of
features that we must guarantee that our graph possesses in order
to ensure that it doesn’t degenerate the gameplay. These features
are discussed on the subsection below.

5.1 Board Graph Evolution
Tomaintain the theming surrounding the gamewewant to generate
boards that resemble real world locations. Most game maps repre-
sent real cities, although on different scales: Cities from the United
States and Canada make up the map that comes with the standard
version of the game, while Ticket to Ride Europe uses cities from
the entire European continent. The relative position of the cities
tend to represent their real world counterparts. Therefore, as a first
step in the generation of a game board, we selected the nodes of
the graph. This was done by selecting a real place to represent with
the graph. One could, as we have done for the map on Figure 1, use
the capital cities of each state in a given country as the nodes. That
gives us the nodes for the graph as well as the relative position
of the nodes in relation to one another. The nodes themselves are
unchanged throughout the evolution and are rather given as input.
This not only facilitates the process, but also provides a semantic
meaning to the graph.

With the nodes set, the next step, in board creation is edge
generation. To generate the edges we use a genetic algorithm. To
start, the initial population is generated using the nodes defined
earlier. By expressing them as points to be connected, we create
the edges that compose a delaunay triangulation [12] for those
nodes. Delaunay triangulation allows us to guarantee that no point
is inside the circumference of any generated triangle.

From this initial graph we generate the initial population. Each
individual is formed by choosing randomly from 3 possible actions
to apply to this starting list of edges. The possible operations are:
remove an edge chosen at random, choose an edge at random to
duplicate and choose a random edge to flip. Duplicating edges is
the only way of increasing the amount of edges from the initial

list, and is an important operation since it is a common feature of
the maps in Ticket to Ride. Essentially, it is possible to have two
nodes be connected by two equally weighted edges simultaneously.
Flipping an edge is an operation analogous to that performed by the
delaunay triangulation algorithm: take the common edge between
2 adjacent triangles and flip it (for example, the triangles ABC and
ACD that share the edge AC will become ABD and BCD, sharing
the edge BD). The step of choosing 1 random operation from these
3 listed is repeated between 1 to 5 times, so each individual has
between 1 and 5 operations applied to them.

With the initial population set, we then run a genetic algorithm.
Mating happens as a two-point crossover operation between the
list of edges of two individuals. Mutation is done by selecting at
random 1 of the 3 operations listed above (removal, duplication, and
flipping) and applying it to a random edge. Tournament selection
is performed to choose individuals for crossover.

Individual candidate evaluation makes use of a custom fitness
function. It starts by penalizing undesirable graphs. To guarantee
that the graph is not degenerate in terms of gameplay we require
that it contains certain properties. First, the graph must be planar.
That is, no two routes in any Ticket to Ride map cross each other.
This way the maps are clean and more readable for human players.
The graph must also be a single strongly connected component.
Having a single component ensures that, before taking any edges,
players can form a route between any 2 cities of the board. Addi-
tionally, the graph should have no nodes with a degree above 10.
Having a node that is too connected makes it disproportionately
desirable while detracting value from other nodes. The number 10
was inferred from the most connected node in the Ticket to Ride
games already released. We want the number of edges to be within
an interval. Having too few edges both disconnects the graph early
in a game and creates a possible scenario in which there simply
are not enough edges to exhaust the train pool and end the game.
Additionally, too few edges restricts the space of possible moves
the players have. We reject graphs that have fewer than 95 edges
and more than 110, once again based off the average amount of
nodes of already released game boards. A graph that does not meet
any of these constraint is set to a negative fitness value. For each
constraint it fails to meet we add -100 to its fitness value.

After filtering out degenerate graphs, we evaluate candidates
based on the variable upon which we want to optimize. Optimally
we would like to have a function that can measure the quality of
gameplay for players, but without an objective way to calculate
quality of gameplay, we have chosen to evaluate the fitness of a
board in terms of the game arc derived from it.

5.2 Game Arc and Branching Factor
We make use of Elias et al. definition of game arc [6]. The game arc
is defined by the size of the space of available moves to a player over
the course of the game. As Elias, G.S. et al point out, the game arc is
analogous to a game arc for the game. Many popular games share
a common structure for their game arc: The number of possible
moves gradually increases, starting from few available decisions,
until mid-game where the size of this space peaks, followed by a
decline where the consequences of the decisions begin to show and
the game proceeds to its final stages.



FDG18, August 7–10, 2018, Malmö, Sweden De Mesentier Silva et al.

(a) Europe board (b) Asia board

Figure 2: Comparison of game arcs between two Ticket to
Ride maps: Europe, on the left, and Asia, on the right. The
x-axis represents the turn and the y-axis represents the av-
erage amount ofmoves. This indicates that the board affects
the shape of the game arc.

As, once again, stated by Elias, G.S. et all, most boardgames reflect
the game arc described above. Ticket to Ride is no exception, but
experimentation has demonstrated that Ticket to Ride’s game arc
can be affected by the game board. Figure 2 shows the comparison
of the average number of moves per turn for different, commercially
released, Ticket to Ride maps, over 200 simulations. As can be seen,
the Europe map follows this common game arc, while Asia displays
different behavior. It is not under the scope of this work to try
to explore a relationship between the shape of the game arc and
direct quality of gameplay, but rather, demonstrate the impact the
graph has on game arc. With this in mind, we chose to guide our
generation towards a graph that can better exhibit the game arc
described by Elias, G.S. et al.

We therefore tailored our fitness function to favor graphs that
resemble said game arc. If the list of edges of an individual passes
all the constraints previously outlined in section 5.1, we proceed to
evaluating it in terms of its game arc. To do so, we need a graph
that can be playable, and thus we must attribute sizes and colors to
all edges.

We first define the sizes. Since we used real geographic data to
decide the position of the nodes, we can also use it to decide the
distance between any 2 nodes. For every edge, we calculate the
distance it represents. Then, we extract the maximum, minimum
and average distance among all edges. With these metrics, we
build 3 buckets of equal size between the minimum and average
value, and another 3 buckets of equal size between the average
and maximum value. We classify each edge using these 6 buckets,
based on the edge’s represented distance value. We then order the
buckets in ascending order, from 1 to 6, from the bucket closest
to the minimum value to the bucket closest to the maximum, we
attribute all edges a weight based on which bucket it falls into.

After all edges have weights, we proceed to coloring each edge.
By analyzing the existing Ticket to Ride maps, we encountered a
trend in edge coloring. If we sum the weights present in the graph,
each basic color represents a total of 9% to 10% of the total weight
as edges of that color. The rest are gray colored edges. To follow a
similar trend, we calculate the sum of the weight of all edges in our
graph. We set the minimum that any color can have as being 9% of
that weight, and the maximum as being 10%. We proceed to count
how many edges of each weight there are. We then calculate the
number of edges of each size that each color will have. To know

such, we try to evenly distribute the weights among the colors. Any
remaining edges are then colored gray.

Once each edge was assigned a weight and color, we proceed
to generate the destination deck. Our goal is to generate both a
board graph and a deck of destination cards automatically, but a
destination deck cannot be generated without a board. In order to
have both components, we generate the board first and, after fixing
and validating it, generate the deck of destination cards. Since we
need a deck of destinations to play the game and therefore evaluate
a board, we create a deck with all possible destination cards, that
are comprised of the combination of any 2 different cities on the
board (without repetitions). The value of the card, based on analysis
of the released games, is attributed to be the sum of the weights of
the shortest weighted path between the 2 cities.

Once these elements are all in place, we can simulate the game. A
4-player game is played between all four agents 200 times. We then
calculate the aggregate average amount of moves of all agents on
every turn of the game. Our fitness function then tries to maximize
for the area of the triangle formed by the point on the first turn, the
point on the last turn, and the "peak" of the graph. This can then be
considered as an approximation of a graph with the general shape
of the game arc that we are looking for.

6 DESTINATION DECK AND CITY
DESIRABILITY

When generating a destination deck, it is imperative that a graph
has been defined in advance. To create, or rather choose, the cards
to be placed in the deck, we first need to know the cities and the
routes in play on the board. For that reason we chose to tackle
the problem of creating a destination deck using a separate set of
evolutions.

The destination cards play an important part in the game as they
give, for most players, a set of objectives around which a strategy is
built. As such, the cards drawn often guide the density of interaction
between players in different parts of the board. Mid-game questions
such as: "Why are players concentrating their efforts on connecting
the east coast?" or "why is someone else so upset that you claimed
the only route connecting New York and Toronto?" can usually be
tracked back to which destination cards the players are holding.

An "unbalanced" destination deck can have a severe impact on
gameplay. This work focuses on the destination deck’s influence on
city desirability. An undesirable city would be a node on the map
whose edges are largely unclaimed by players. The most common
features that directly influence undesirability are: low connectivity
of the node (usually nodes with only 2 or 3 routes connecting it)
and being surrounded by more "valuable" nodes, those that are very
often connected. The destination exerts a great deal of influence
over the desirability of a city. There are noticeable differences in
the desirability of specific cities depending on the deck, as shown
by our previous work [4, 5].

6.1 Destination Deck Evolution
Evolution of the destination deck is done as follows. First, a list
is created out of the possible pairs of cities. We create a list of all
combinations of the n nodes of the graph taken 2 at a time. This
acts as a baseline for the individuals we generate and evaluate. An



Evolving Maps and Decks for Ticket to Ride FDG18, August 7–10, 2018, Malmö, Sweden

individual is represented as a list of k booleans, where k is the
number of elements on our combinations list. So, if a boolean on
index x of the individual is True, the card represented by the 2
cities on the index x of the list of combinations is part of the deck.
Outside of the 2 cities, the destination card needs to have a point
value. By analyzing the released decks of the game there is a simple
rule that holds for the vast majority of the destination cards: the
point value of the card is equal to the sum of weights of the edges
that make the path of minimum total weight between the two cities.
That is therefore the method we use to define the point value for a
card.

During evolution, a selection tournament is done to choose in-
dividuals for mating with two-point crossover. The mutation op-
eration involves randomly selecting one of the booleans on the
individuals list and flipping its value.

The fitness function tries to minimize the overall undesirability
of cities. To achieve this, we simulate 200 games for each individual.
Then, we create a map to represent how undesirable the cities are in
the simulation. The keys are the cities in the map and the values are
the number of games in the simulation in which no player claimed
any routes connecting that city. As a last step, we calculate the
variance of the values in the map, and the most fit individual is the
one with the lowest variance.

7 RESULTS AND DISCUSSION
Our method performs two separate generative processes. It can
generate a deck of destination cards given a graph, as well as gen-
erate a graph independently of the destination card deck. As such,
we will discuss the results for the board generation step and deck
generation step separately.

7.1 Board Results
With our algorithm we are able to generate novel maps. We showed
the results of a completely new map in Figure 1. However, for the
purpose of analysis, we decided to generate a map using the same
nodes as an existing, commercially released, board. Figure 3 shows
the original USA board on the left and the board we evolved on the
right.

There is an immediately recognizable regularity in the shape
of the original map as compared to the generated map, especially
around the more external edges. The original map’s outline resem-
bles that of the geographic United States , due primarily to the fact
that external nodes connect to neighboring external nodes. It would
be simple to codify that into a constraint and enforce it with the
ones we already established at the first step of our fitness function,
but we decided against enforcing this rule.

The coloring of routes on our board appears subpar in compari-
son to the original. It is undesirable to have adjacent routes that are
of the same simple color (not gray) as this could require a player to
collect many cards of a specific color. That said, since there is an
element of randomness to our coloring, one could either run the
evolution several times and pick one’s favorite coloring or impose a
constraint preventing adjacent edges from being painted the same
color.

In terms of routes, our graph has 6 fewer edges then the original.
Out of all edges, there are 32 which connect the same two cities on

Deck Variance # Cards # Cities Avg pts
USA 29888 30 30 11.4
1910 11410 35 33 11.09

Evolved 3128 38 31 9.37
Table 1: Table comparing 3 different decks being played on
the same map. Variance is the variance of undesirability be-
tween cities. # Cards is the size of the deck. # Cities is the
number of different cities present in the cards. Avg pts is
the average amount of points in the cards of the deck.

both graphs, 17 of which have the same weight and 5 have the same
color (all being gray). The average node degree of both graphs is
close to 5.5 and the variance of node degree of both is close to 3.1.

In terms of game arc, we simulated 1000 matches between the
4 agents on both maps. In both maps we used the same deck of
destination cards: the deck that has every single possible desti-
nation card. Additionally, we took the game arc of a randomly
generated board to act as a baseline for comparison. Figure 4 shows
the resulting game arc all three both maps.

As can be seen, the fully evolved map’s game arc closely matches
that of the original, which is significantly different from the baseline.
This means that our algorithm was successful in evolving a map
from its degenerate baseline to one that can create the same game
arc as the original Ticket to Ride. Not only that, this also gives an
indication that the original game map may possibly be close to
some optimal game arc according to our evaluation function.

7.2 Destination Deck Results
In order to compare destination decks, we decided to generate a
deck for the original USA map. This way, we can compare it to both
the original deck of destination cards, as well as the one released
later, USA 1910. Table 1 shows the comparison between decks.

Through the table we can notice that through evolution we man-
age to reduce the variance significantly compared to the other decks.
It is also worth noting that the lower average in points indicates
that, in general, cities that share a card on our generated deck are
closer than on the others. The fact that reducing the variance in
city desirability required many generations and ultimately a sub-
stantially different destination deck indicates that the distribution
of desirability is a function of the entire deck, rather than a few
component cards within it.

We can also evaluate distance between decks. By creating a
vector from each deck, where each dimension corresponds to a
city and the value for that dimension is the total amount of cards
that have that city in the deck. Then, we can check how similar
the decks are using euclidean distance. Turns out, the two most
similar decks are USA and USA 1910, with a distance of 7.2, while
our generated deck has a distance of 8.0 to USA 1910 and a distance
of 10.6 to USA. Since the difference in variance is smaller between
USA 1910 and the evolved deck, this shows that a specific city being
present in the deck does not translate directly into variance.



FDG18, August 7–10, 2018, Malmö, Sweden De Mesentier Silva et al.

(a) Original USA map (b) USA map generated by our algorithm

Figure 3: Comparison between the original USA map that comes with the regular version of the game and an USA map gener-
ated by our algorithm after being initialized with the same nodes as the original. Themaps are shownwith the same rendering
style to facilitate comparison.

Figure 4: Comparing the game arc for the original USAmap,
in blue, our evolved USA map, in red, and a map with ran-
domly generated edges, in green. 1000 simulations between
the 4 agents were run for each map, and for both maps a
"full" deck of destination cards was used.

8 CONCLUSION
The techniques we have shown in this work are capable of generat-
ing the two main components of the game Ticket to Ride: the board,
which is the center of action in the game, and the deck of desti-
nation cards, which is commonly responsible for guiding player
strategy during the game.

We detailed our evolutionary approaches to these problems and
talked about our choices for fitness functions. While trying to
achieve a specific game arc in the game, we look to guarantee
a game arc that is common to most board games. Our results also
confirm that the board used for the game has great impact on the
shape of the game arc. With the destination deck we desired to
tackle a different detail on the design. By reducing the variance in
undesirability of cities, we are trying to ensure that interaction will
be spread through the board, and that most nodes are perceived to
have more similar value in terms of strategy.

Our results are compared with components released for the game
and achieve very close results, for the maps, or better results, for the
destination deck, in terms of the features we try to fit our evolution
for.

9 FUTUREWORK
Although the results show great potential, since there is no direct
way to measure for quality of gameplay or factor of fun, the only
way to test the quality of the design behind our boards and decks is
to have them played by humans, rather than AI agents. As future
work we intend to conduct a study to gather feedback from players
as to how they would rate the content created so we can further
validate the ideas presented in this paper. An option is to have
groups of people playing games on the maps and decks we evolved
and on components of low fitness and ask them for a ranking, in
order to check if our metrics are working in the direction of quality
and fun.

ACKNOWLEDGMENTS
Authors thank the support of CAPES, Coordenação de Aperfeiçoa-
mento de Pessoal de Nível Superior - Brazil.

REFERENCES
[1] Cameron Browne and Frederic Maire. 2010. Evolutionary game design. IEEE

Transactions on Computational Intelligence and AI in Games 2, 1 (2010), 1–16.
[2] Days of Wonder. 2004. Ticket to Ride.

https://en.wikipedia.org/wiki/Ticket_to_Ride_(board_game) Accessed:
2016-05-15.

[3] Fernando de Mesentier Silva, Aaron Isaksen, Julian Togelius, and Andy Nealen.
2016. Generating Heuristics for Novice Players. 2016 IEEE Conference on Compu-
tational Intelligence and Games (2016).

[4] Fernando de Mesentier Silva, Scott Lee, Julian Togelius, and Andy Nealen. 2017.
AI as Evaluator: Search Driven Playtesting of Modern Board Games. (2017).

[5] Fernando de Mesentier Silva, Scott Lee, Julian Togelius, and Andy Nealen. 2017.
AI-based Playtesting of Contemporary Board Games. (2017).

[6] George Skaff Elias, Richard Garfield, and K Robert Gutschera. 2012. Characteristics
of games.

[7] José María Font Fernández, Daniel Manrique Gamo, Tobias Mahlmann, and
Julian Togelius. 2013. Towards the automatic generation of card games through
grammar-guided genetic programming. (2013).

[8] Hasbro. 2007. Monopoly: Electronic Banking.
https://boardgamegeek.com/boardgame/32032/monopoly-electronic-banking
Accessed: 2017-05-15.



Evolving Maps and Decks for Ticket to Ride FDG18, August 7–10, 2018, Malmö, Sweden

[9] Erin J Hastings, Ratan K Guha, and Kenneth O Stanley. 2009. Evolving content
in the galactic arms race video game. In Computational Intelligence and Games,
2009. CIG 2009. IEEE Symposium on. IEEE, 241–248.

[10] Britton Horn, Steve Dahlskog, Noor Shaker, Gillian Smith, and Julian Togelius.
2014. A comparative evaluation of procedural level generators in the mario ai
framework. (2014).

[11] Frank Lantz, Aaron Isaksen, Alexander Jaffe, Andy Nealen, and Julian Togelius.
2017. Depth in Strategic Games. AAAI 2017 Workshop: What’s Next for AI in
Games (2017).

[12] Der-Tsai Lee and Bruce J Schachter. 1980. Two algorithms for constructing a
Delaunay triangulation. International Journal of Computer & Information Sciences
9, 3 (1980), 219–242.

[13] Tobias Mahlmann, Julian Togelius, and Georgios N Yannakakis. 2012. Evolving
card sets towards balancing dominion. In Evolutionary Computation (CEC), 2012
IEEE Congress on. IEEE, 1–8.

[14] Sebastian Risi, Joel Lehman, David B D’Ambrosio, Ryan Hall, and Kenneth O
Stanley. 2016. Petalz: Search-based procedural content generation for the casual
gamer. IEEE Transactions on Computational Intelligence and AI in Games 8, 3
(2016), 244–255.

[15] Noor Shaker, Julian Togelius, and M Nelson. 2016. Procedural Content Generation
In Games. Springer.

[16] Julian Togelius, Mike Preuss, Nicola Beume, Simon Wessing, Johan Hagelbäck,
Georgios N Yannakakis, and Corrado Grappiolo. 2013. Controllable procedural
map generation via multiobjective evolution. Genetic Programming and Evolvable
Machines 14, 2 (2013), 245–277.

[17] Julian Togelius, Georgios N Yannakakis, Kenneth O Stanley, and Cameron Browne.
2011. Search-based procedural content generation: A taxonomy and survey. IEEE
Transactions on Computational Intelligence and AI in Games 3, 3 (2011), 172–186.

[18] Z-Man Games. 2016. Pandemic: Reign of Cthulhu.
https://boardgamegeek.com/boardgame/192153/pandemic-reign-cthulhu
Accessed: 2017-05-15.


	Abstract
	1 Introduction
	2 Related Work
	3 Ticket to Ride
	4 Simulating the game
	5 Board Graph and Branching Factor
	5.1 Board Graph Evolution
	5.2 Game Arc and Branching Factor

	6 Destination Deck and City Desirability
	6.1 Destination Deck Evolution

	7 Results and Discussion
	7.1 Board Results
	7.2 Destination Deck Results

	8 Conclusion
	9 Future Work
	Acknowledgments
	References

