
Generating Lode Runner Levels by Learning Player Paths with
LSTMs

Kynan Sorochan
University of Alberta
Edmonton, Canada

ksorocha@ualberta.ca

Jerry Chen
University of Alberta
Edmonton, Canada
jerry3@ualberta.ca

Yakun Yu
University of Alberta
Edmonton, Canada
yakun2@ualberta.ca

Matthew Guzdial
University of Alberta
Edmonton, Canada
guzdial@ualberta.ca

ABSTRACT
Machine learning has been a popular tool in many different fields,
including procedural content generation. However, procedural con-
tent generation via machine learning (PCGML) approaches can
struggle with controllability and coherence. In this paper, we at-
tempt to address these problems by learning to generate human-like
paths, and then generating levels based on these paths. We extract
player path data from gameplay video, train an LSTM to generate
new paths based on this data, and then generate game levels based
on this path data. We demonstrate that our approach leads to more
coherent levels for the game Lode Runner in comparison to an
existing PCGML approach.

CCS CONCEPTS
•Computingmethodologies→Machine learning approaches;
Neural networks.

KEYWORDS
datasets, neural networks, path learning, path detection
ACM Reference Format:
Kynan Sorochan, Jerry Chen, Yakun Yu, and Matthew Guzdial. 2021. Gen-
erating Lode Runner Levels by Learning Player Paths with LSTMs. In The
16th International Conference on the Foundations of Digital Games (FDG)
2021 (FDG’21), August 3–6, 2021, Montreal, QC, Canada. ACM, New York,
NY, USA, 7 pages. https://doi.org/10.1145/3472538.3472602

1 INTRODUCTION
Procedural content generation via machine learning (PCGML) is
the study and application of machine learning to procedurally gen-
erating content, particularly for games [23]. While PCGML has had
enjoyed considerable popularity recently, a number of open prob-
lems exist. Particularly in comparison to traditional, non-ML PCG,
PCGML approaches struggle with controllability and coherence.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
FDG’21, August 3–6, 2021, Montreal, QC, Canada
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8422-3/21/08. . . $15.00
https://doi.org/10.1145/3472538.3472602

We define controllability as the ability for a user to impact par-
ticular attributes of the generated content. In traditional PCG, since
the system is authored by a human, there are a number of strategies
to allow a user to impact the output or enforce particular constraints
[7, 9, 14]. There are efforts to make PCGML approaches control-
lable, but this is still an under-explored problem [2, 3, 11, 13]. In
particular, we identify a lack of focus on approaches that allow
users to specify high-level, intuitive constraints as the input to an
ML generator that then outputs game content that matches those
constraints.

By coherence we indicate the problem of game content demon-
strating global coherence, global structure that fits human under-
standing of that game content. Global structure includes a wide
range of constraints, and is dependent on the particular game con-
tent in question. For example, playability in game levels, the ability
to complete said level, is an example of global structure that we
expect from human-authored game levels. However, a level being
playable is not the only element of global structure that we expect.
A completely flat platformer game level would be playable, but
would violate other elements of global structure. Modeling global
structure is a common problem in machine learning generally [10].
In PCGML, there have been attempts to model global structure,
with the most common approach being to model the player’s path
through a game level [12, 21]. However, this area is also under-
explored.

In this paper, we investigate a novel PCGML approach that at-
tempts to address these two open problems: controllability and
coherence. Specifically, we introduce an approach to generate Lode
Runner levels based on specified paths. Our focus on coherence
will be in reference to Lode Runner Levels. We model these paths to
ensure that they are human-like with a Long Short-Term Memory
Recurrent Neural Network (LSTM RNN or LSTM). For training
data we extract real human paths on existing Lode Runner levels
from gameplay video. We then use the LSTM to generate novel
human-like paths and employ a Markov Chain to generate novel
levels based on these generated paths. We employ a Markov Chain
for this initial investigation as it represents a simple ML model that
typically struggles to capture global structure. Therefore, it’s an
ideal choice to investigate whether this approach improves level
coherence. Our approach is inherently controllable as we can input
arbitrary paths, though we focus on our generated, human-like

https://doi.org/10.1145/3472538.3472602
https://doi.org/10.1145/3472538.3472602


FDG’21, August 3–6, 2021, Montreal, QC, Canada Sorochan et al.

paths in this paper. We acknowledge that we won’t be directly eval-
uating the controllability of this approach, but still contend that it
is controllable.

In this paper, we first introduce related prior work. We then
overview our generator, from data extraction to the novel gener-
ation of Lode Runner levels. We compare the performance of our
generator to an existing Markov Chain generator without path data
to evaluate whether we demonstrate improved coherence [18]. We
then present a secondary evaluation of our approach in comparison
to the original Lode Runner levels. We end with a discussion of our
limitations and future work.

2 RELATEDWORKS
In this section we overview work in terms of prior PCGML ap-
proaches to generate Loderunner levels, controllability in PCGML,
and coherence via paths in PCGML.

Many PCGML approaches have been applied to level generation
for Lode Runner in recent years. Thakkar et al. proposed the use of
a variational autoencoder to generate new levels for Lode Runner
based on a binary encoding of each character in the original levels.
They attempted to improve the playability, one aspect of global
structure, by searching the learned, latent space with an evolution-
ary algorithm [25]. We also attempt to increase playability, but
based on altering the input to the generation pipeline instead of
including search-based PCG within the pipeline. Snodgrass and
Ontanón made use of Markov models to generate content for many
games including Lode Runner [19], we include this approach as a
baseline as we also make use of a Markov chain for our generator.

Markov chains have been a common method for PCGML since
its inception [15]. Much of this prior work has focused on Super
Mario Bros. level generation, a common area of PCGML research
[15, 17, 18, 22]. We also employ Markov chains, as they typically
struggle with global coherence in comparison to other methods [5].

Many approaches have been made to attempt to improve the
coherence of PCGML output [25]. Of particular interest to us are
approaches that attempt to do this by invoking some representation
of the player path [12]. Summerville et al. trained an LSTM on Super
Mario Bros. levels that included representations of potential player
paths [21]. Follow up work by Summerville et al. extracted player
paths from gameplay video and found that these led to significantly
different output levels when they were used to train LSTMs [20].
We use a similar method to extract player paths. The major differ-
ence between Summerville et al.’s approach and ours is that they
alter the level representation to include the path information. In-
stead, we generate novel paths and use these as input for a PCGML
level generator. The Summerville et al. generator could not take a
specified path as input without modification. This and much of the
prior work mentioned above is based on the representations from
the Video Game Level Corpus (VGLC) [24], which we draw on for
our level representation.

3 SYSTEM OVERVIEW
We aim to show the benefits of human-like paths to improve global
coherence in PCGML generators. Our approach can be divided into
several steps: (1) extracting the paths from gameplay videos, (2)
training an LSTM on the path data, (3) training our Markov chain

on the original Lode Runner levels, and (4) generating a new level
from a generated path.

3.1 Data extraction
Our goal for this first step is to extract human paths for solving
the original Lode Runner levels, which we extract from gameplay
video. We focus on human paths instead of paths generated by an
automated level playing agent as in prior work [21]. We made this
choice as prior work found that human paths led to different output
levels than automated paths [21]. Based on this prior work, we
make the assumption that automated paths would lead to levels
that were more sparse, but more human-like paths will lead to
paths closer to the original game. We leave a verification of this
assumption for future work.

We download a series of videos from YouTube, based on similar
approaches in prior work [6, 21], Once we have the videos, we
extract the frames and track the location of the player in each
frame for each level, based on the same approach used in the above
prior work. We tag each location with the type of movement using
OpenCV and pattern matching [1]. We do this by hand tagging
a series of images or sprites representing the different actions of
the player in Lode Runner. In each frame, we identify the player’s
action or type of movement based on the image with the highest
probability. We map the player’s location in the frame to a 32 by 22
grid, which is the size of the VGLC dataset for each level. This gives
us a sequence of 32 by 22 grids equal in length to the amount of time
the player played a given level. After obtaining this sequence we
can identify one out of five possible actions for each grid (moving
left as ’l’, moving right as ’r’, climbing up ’u’, climbing down ’c’,
and falling down as ’f’) based on the location change of the player
between pairs of grids. This allows us to store a player’s path for
each level as a one-dimensional sequence.

3.2 Path generation
We could have simply reused the extracted player paths as the input
for a Lode Runner level generation process. However, this would
have limited the number of levels our system could generate. As
such, we need some way to generate new human-like paths.

Our extracted human paths vary significantly both in terms of
length and patterns.[4] To address this, we first split the sequences
of actions into small chunks of a fixed size (50). We represent each
action as a one-hot encoding of length five for the five actions.
Every action becomes a vector of length five, with every action
type represented as an index in that vector. An action is represented
by a 1 at its index if it occurred at this position in the sequence and
a 0 otherwise. Thus our data becomes a series of 50x5 matrices.

We employ a Long Short-Term Memory Recurrent Neural Net-
work (LSTM) for our path modeling, as they have been demon-
strated to work well on PCGML tasks with sequence-like data [20].
An LSTM is designed to better learn long-term dependencies than
standard recurrent neural networks. This is important for our use
case as the human paths tended to have many repeated actions in a
row, and we didn’t want our model to learn to just repeat the same
action endlessly.

We employ an LSTM-based Seq2Seq model that is built to gener-
ate new paths. Our input is one 50-length path sequence and the



Generating Lode Runner Levels by Learning Player Paths with LSTMs FDG’21, August 3–6, 2021, Montreal, QC, Canada

expected output is the next 50-length path sequence. The model is
composed of 2 layers with 512 LSTM cells each. We employ dropout
and gradient clipping to prevent overfitting and gradient explosion,
respectively. The final layer is a fully connected layer of length 50
with softmax activation, to better represent the probability distribu-
tion of a single character at each time step. We trained our model
for 60 epochs with a 0.001 learning rate and the adam optimizer[8].
We probabilistically sample each output action based on treating
the softmax activation as a probability distribution. We note that
despite using 50 inputs and 50 outputs this model can be used to
create paths of arbitrary lengths by inputting empty (all 0s) ac-
tions initially, and then continually generating based on previously
generated outputs.

3.3 Level Structure Learning
The path information we generate only partially defines a level. The
same level path could be associated with a large, but not infinite
number of levels. This is particularly true in Lode Runner, where
the player can directly “make” paths through their own actions
(e.g. digging holes). This means that we still need more information
about what kind of tiles can be associated with what action, and
how to fill out the rest of the level “away” from the player path.
Given our interest in demonstrating the impact of player paths
in improving global coherency, we employ a multi-dimensional
Markov chain [16]. In our multi-dimensional Markov chain each
tile value depends on the tiles to its left and directly below, along
with the player action at the current position, to the right, and
above. We note that prior examples of platformer Markov chains
have made use of nodes with 3 dependencies: the left, below, and to
the left and below.We experimented with this model, but found that
our 2-tile dependency sufficiently modeled level structure and led
to increased diversity in the output. We train our multi-dimensional
Markov chain on the Lode Runner levels from the VGLC [24], with
the added information from our extracted paths in the grid-based
representation discussed above.

We also record a series of statistics in terms of the number of
enemies and gold pieces in the training levels. For each original level,
we found the ratio of the numbers of enemies and gold pieces to the
associated player path lengths.We represent these two distributions
as two Gaussian distributions. This allows us to sample from these
two distributions and derive an overall number of desired gold
pieces and enemies for a new level.

3.4 Complete Level Generation
Our level generation process begins by generating a new path. From
this path we can determine the minimum size of a level necessary
to contain this path. We instantiate this level as an empty grid of
the minimum size. We label every visited tile in this level with the
action that the player path indicates, and the remaining tiles with a
special token that indicates no actions. We automatically constrain
some tile values based on the action type, based on the existing
keys in the Markov Chain. For example, if the action taken at a tile
is to move up, then we know that this tile must contain a ladder.
Or if the action at a tile is to move to the left, then this tile can be
empty, have a brick (as the player may break it from above and

fall to it, then move left), or a rope. This gives us some high-level
constraints on the tiles and a basic initial structure to work with.

We apply our Markov chain to fill the level out with the final tile
types from the partially specified state. We start from the bottom
left corner and move along each row from left to right until we’ve
reached the top of the screen. If a tile has been specified we do not
need to generate a new tile at this location, and we just move on. If
the tile has been partially specified then we remove the tile possi-
bilities that have already been ruled out, and then probabilistically
sample from the remaining options based on the learned probability
distribution in the Markov chain. If the tile has not been specified at
all, then we simply probabilistically sample from the Markov chain
as normal [16]. In the event that a key does not exist, we remove all
dependencies except for the left and below dependency and then
sample from this simplified distribution. We made this choice as
this removes all path requirements and only considers the structure
of the level.

The final step of our generation process is to place all enemy
and gold tiles. We randomly sample from both of the Gaussian
distributions we described above. We multiply the sampled values
by the generated path length to get the final numbers of enemies
and gold pieces. We then randomly place these elements along the
player’s path, as they are elements that the player would have to
avoid or seek out, respectively. We made this choice as the Lode
Runner levels in the VGLC only place enemies and gold pieces in
place of empty tiles, but both entities can move. Further, the Markov
chain struggled to learn to place these elements effectively given
how rare they are in comparison to the other tile types.

4 QUANTITATIVE EVALUATION
We extracted 66 player paths for 66 game levels from a 4.5-hour
long gameplay video. After training on these sequences, we were
able to generate an arbitrary number of levels. Figure 2 gives an
example of a generated level based on our approach.

This research seeks to determine whether adding a player path as
input to a PCGML generator improves global coherence. We employ
Markov chains, a PCGML approach that tends to struggle with
global coherence in order to better understand the impact of player
paths [5]. As such, the natural choice for an initial evaluation is
investigating how the inclusion of a generated path as input changes
the generated levels in comparison to a Markov chain approach
without player path information. We therefore compare against the
work of Snodgrass and Ontanón, who employed a Markov chain
without path information to generate Lode Runner levels [19].

We employed an A* pathfinding agent to test how a player might
play the two different sets of Lode Runner levels. [4] Ideally, we
might have used a human subject study to compare the two types
of generated levels. However, we lacked the time and resources
for a human subject study, and so use this method for an initial
comparison. The pathfinder starts from the player tile present in
both sets of generated levels and attempts to pathfind to each gold
piece in turn. Lode Runner is a complex game, which allows players
to momentarily trap enemies, as such, we ignore enemies while
pathfinding. This decision was also motivated by the fact that we
lacked a simulator to fully simulate enemy movement in the game,
meaning that the enemies would just be treated as impassable



FDG’21, August 3–6, 2021, Montreal, QC, Canada Sorochan et al.

obstacles otherwise, which would not be appropriate. We note that
prior work did not make this assumption, and so they reported
much lower percentages of playable outputs [19]. However, since
this assumption is made for both types of levels it’s still helpful for
comparison purposes. The pathfinder tracks the number of nodes
explored on the way to each gold as well as each gold that it was able
to reach. It reports the total number of each of those two metrics
which we use to compare between the two types of levels.

Ideally, an A* agent should be able to reach each gold piece from
the starting location in a playable Lode Runner level. We had the A*
agent report the number of nodes explored on the way to each gold
piece as a measure of coherence. All of the existing Lode Runner
levels have clear paths to access each gold piece, essentially acting
as puzzles for the player to solve. Therefore, we take a low number
of nodes explore as an indirect measure of global coherence.

We employ the following metrics in this comparative evaluation,
reporting the average and standard deviation of each metric across
the generated levels:

• Gold Total Per Level - This is the average total number of
gold pieces the A* agent needed to find. This is used in
determining the percentage of gold collected in a level, as
well as the potential difficulty and length of a level. The
more gold pieces the more potential for difficulty depending
on how they are distributed throughout the level. It also
coincides with how long a level may take to play. The more
gold, the longer it could take for a player to collect each
piece.

• Percentage Collected Per Level - This metric gives how many
of the gold pieces could be collected in a level. Values closer to
100% indicate more playable levels overall. A higher average
indicates that more of the levels are playable.

• Total Nodes Explored - This metric is the number of nodes
the A* agent needed in total to reach all of the reachable
gold pieces. We do not include nodes explored when the
pathfinder attempted to reach unreachable gold pieces. This
number can be taken as an approximation for the minimum
amount of time a player would need to complete a level. The
higher the number the longer the time needed to complete
the level.

• Nodes Per Gold - Since levels do not all have the same number
of gold pieces, the total nodes explored metric on it’s own
could potential leave an inaccurate reflection of each level. As
such, this metric gives the average number of nodes needed
to reach each reachable piece of gold per level. The same
rule applies as with the above metric, where the larger the
number the longer it potentially could take to reach each
gold piece.

These metrics allow us to compare between our two sets of gener-
ated levels. We are particularly interested in the second metric as a
measure of playability and the fourth metric as a measure of global
coherence. We report the other two metrics for context to these
two metrics. If the Snodgrass and Ontanón levels outperform our
levels in terms of playability, that could indicate that our method for
placing gold pieces along the player path is flawed. If the Snodgrass
and Ontanón levels outperform our levels or perform similarly in

Figure 1: Boxplot Results of Nodes Explored Metric

terms of nodes per gold metric, this would indicate that our inclu-
sion of the player path did not improve global coherence, and led
to similarly coherent/incoherent levels as a simpler Markov chain
approach.

5 QUALITATIVE RESULTS
Table 1 includes all of our results in terms of our four metrics.
The first column gives the average and standard deviation of the
total number of gold pieces included in each generated level. This
immediately demonstrates the impact of employing a Gaussian
distribution to model the total number of gold pieces in a level, as
opposed to leaving it up to aMarkov chain alone to place gold pieces.
The Snodgrass and Ontanón levels have a much higher average and
a much larger standard deviation. This indicates that their levels
tended to have many more gold pieces on average compared to
existing Lode Runner levels, and that this number varied to a great
extent with the largest number of gold pieces being nearly three
times as many for the Snodgrass and Ontanón levels. This is an
initial indication that our approach led to more coherent levels.

The second column of Table 1 shows the average amount of gold
that can be collected per level, indicating howmany of the generated
levels were playable. These values indicate that the Snodgrass and
Ontanón levels are on average more likely to be playable. However,
there is more complexity to this value than might first appear.
Since on average our levels have less gold than the Snodgrass and
Ontanón levels, the impact of being unable to reach a single gold
piece is much higher. Collecting 6 of 7 available gold pieces will
result in a lower percentage than 17 of 18 possible gold pieces. We
also performed a Mann-Whitney U test to determine if these two
distributions differed significantly. The test was unable to reject
the null hypothesis (p = 0.05629) that these two distributions arose
from the same underlying distribution. Thus, we take this to mean
that the difference in terms of playability was insignificant. As
mentioned above, this runs counter to prior reported playability
values [19], which is due to our choice not to model enemy locations.
Thus, this playability metric should be considered an upper bound.

The third column of Table 1 gives the Total Nodes Explored met-
ric, which we also visualize in Figure 1 for clarity. It is immediately
clear that the Snodgrass and Ontanón generator leads to massively



Generating Lode Runner Levels by Learning Player Paths with LSTMs FDG’21, August 3–6, 2021, Montreal, QC, Canada

Gold Total Percentage Collected Total Nodes Explored Nodes per Gold
Snodgrass and Ontanón 18.76±15.07 98.94±6.98 4638.93±10837.32 220.62±477.89
Ours 7.65±2.98 94.68±19.07 910.33±2047.28 116.44±264.82

Table 1: Quantitative Evaluation Results

more explored nodes than our approach. However, this is not a fair
comparison due to the higher average number of gold pieces among
these levels and the larger variance of the number of gold pieces.
Thus, we turn to the fourth column and the average number of
nodes explored for each gold piece. This comparison is closer, only
indicating that the Snodgrass and Ontanón levels require twice
as many nodes to be explored to reach each gold piece. However,
this difference is still substantial. This indicates that, for each gold
piece, it would take a player roughly twice the time to collect it
for an average Snodgrass and Ontanón level. This indicates that
there is no clear path between the gold pieces in the Snodgrass
and Ontanón levels. The standard deviation also signifies that our
levels are more consistent in terms of this metric. We take this as an
indication of the greater global coherency of our generated levels,
that these levels include clear paths for the player to take to reach
most gold pieces, even if the placement of some of these gold pieces
makes them unreachable.

Our findings suggest that both our method and the method used
by Snodgrass and Ontanón produce levels that are roughly equally
playable using our A* agent that ignored enemy positions. Looking
at the metric values it would have been very difficult to improve on
this metric without achieving 100 percent playability. Our analysis
did show that we improved the consistency and reliability of the
solutions to levels.

6 QUALITATIVE EVALUATION
In this section, we asses the quality of our output levels in compari-
son to the original levels. We did this in order to get a more nuanced
look as to whether we have actually achieved greater global co-
herence. Given the results of our first set of evaluations, it’s clear
that our approach was able to produce levels with clearer and more
consistent solutions. However, it’s possible that our output levels
no longer resemble the original Lode Runner levels. For example,
they may have become too simple or have lost other aspects of
global coherence. We use the following metrics to investigate this
possibility:

• s - The minimum size of the level to fit the path. Ideally, we’d
like the levels to match the size of the original Lode Runner
levels: a 32x22 grid. Since we do not explicitly enforce this,
our hope is that our approach will have led to an implicit
bias towards levels of this size.

• e - The proportion of the level taken up by empty space. The
original Lode Runner levels have a fair amount of variance
when it comes to empty space, and empty space is often
used strategically to create shapes or to indicate potential
solutions. Thus, if our distribution of empty tiles matches
those from the original levels, this would indicate a positive
signal in terms of similar global structure.

• i - The proportion of the room taken up by “interesting” tiles
that are not simply solid or empty. It goes without saying
that the way that the Lode Runner levels employ ladders,
ropes, enemies, and gold pieces is very important to the
overall design of the level.

7 RESULTS

Figure 2: A good generated level.

We generated 34 generated levels and compared these to the 34
original levels that we did not use to train our model. We found that
20 of our generated levels matched the expected size of 32x22, with
14 of our levels having a smaller size. This means that these levels
could be expanded to fit the expected size while retaining their same
generated structure. This is a positive sign, as our approach was
able to implicitly lead to levels with the same or similar sizes to the
original levels without explicitly modeling this constraint. Notably,
none of the generated levels were larger than the original levels,
though this may be due to the fact that we employed a constant
generated path size of 103 (which was the average of the paths we
extracted from the gameplay video). However, a generated path of
103 steps could still have led to a level larger than 32x22.

Figure 3 and Figure 4 show the distribution of “interesting” and
empty space tiles in the generated and original levels respectively.
The distribution of “interesting” tiles does suggest that our levels
tended to lead to fewer interesting tiles compared to the original
levels. However, the overall distributions are fairly similar. Further,
it’s possible that due to the 14 smaller levels the generated levels
look more conservative than they truly are since this distribution



FDG’21, August 3–6, 2021, Montreal, QC, Canada Sorochan et al.

does not take into account level size. The empty space distribution
seems to differ more with the original levels employing much more
empty space. This is not an unusual problem for Markov Chain
models: filling in too much content. However, we again note that
the 14 smaller levels may be part of the problem here. By filling the
remaining space of these 14 smaller levels with empty space, the
two distributions would look much more similar.

Figure 3: The distribution of "interesting" tiles.

Figure 4: The distribution of empty space.

8 DISCUSSION
There are 150 levels completed in the video we used for this paper.
However, trimming and cropping each level from the video was
time-consuming and repetitive. Therefore we just dealt with 66
levels to extract player paths. If all levels were processed, the results
might be improved.

Extracting path information from videos has a couple of chal-
lenges. Our method works well for most levels, but the levels with
lots of stairs and levels with fake bricks (where there appears to
be a brick, but it is actually an empty space as the player steps on
it) will not work very well. Due to the low image quality, when

the player walks passed the stairs, the combined figure becomes
very difficult to recognize. This may sometimes lead to losing track
of the player. The problem with the fake brick has a similar effect.
When the player falls through a fake brick, the program fails to
detect the player, hence losing track of the player.

It is a limitation of our approach that we always assume a fixed
path length. While we made this choice for simplicity, the original
levels did not all have the same path length. As such, it would be
better to model this path length value separately. Alternatively, we
could generate the path until we hit the desired level size and then
stop.

Figure 5: A bad generated level: badly placed enemies.

Figure 5 and Figure 6 show two typical issues that prevent the
player from completing the generated levels. In Figure 5, an enemy
is directly placed beside the player, and there is no other way to
go around or trap the enemy. This shows that randomly placing
enemies along the player’s path is not ideal, we will also need to
take consideration that the player needs to have a way to deal with
enemies on the path. We ignored this problem for our pathfinding-
based evaluation, but we will need to confront it for future work.
Figure6 had a different problem. The generated structure led to the
player getting stuck. This happens when the row where the player
is at and the row above it both have path information. Then when
filling the tiles, the system would make a mistake that the bottom
row can be bricks, and the player can dig along the upper row to
create a path to the lower row. But this will not work if the player
started from the lower row. This situation would trip up our A*
pathfinder, and was one of the factors that led to our lower average
playability score.

In this initial investigation we assumed controllability due to our
input of player paths. While we can alter these paths and produce



Generating Lode Runner Levels by Learning Player Paths with LSTMs FDG’21, August 3–6, 2021, Montreal, QC, Canada

Figure 6: A bad generated level: badly designed structure.

new levels based on them, we did not include any evaluation of this
aspect of our research. This would be a difficult thing to evaluate
without a human subject study, and so we leave it for future work.

9 CONCLUSIONS
In this research project, we developed a player path-based method
for the generation of Lode Runner levels. We extracted player paths
from gameplay video to serve as training data, then used an LSTM
Seq2Seq model to generate new player paths, and applied Markov
Chains to produce new levels based on these paths. Our experi-
mental results show that this approach can lead to improved global
coherence of the generated levels while still leading to levels that
share a resemblance to the original levels. For future work, we hope
to improve the proposed method to ensure playability, to use a
more sophisticated pathfinding agent that takes into account things
like enemy placement, and to test this approach on other games.

ACKNOWLEDGMENTS
This work was funded by the Canada CIFAR AI Chairs Program.
We acknowledge the support of the Alberta Machine Intelligence
Institute (Amii).

REFERENCES
[1] Gary Bradski and Adrian Kaehler. 2000. OpenCV. Dr. Dobb’s journal of software

tools 3 (2000).

[2] Eugene Chen, Christoph Sydora, Brad Burega, Anmol Mahajan, Abdullah Abdul-
lah, Matthew Gallivan, and Matthew Guzdial. 2020. Image-to-Level: Generation
and Repair. In Proceedings of the AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment, Vol. 16. 189–195.

[3] Darui Cheng, Honglei Han, and Guangzheng Fei. 2020. Automatic Generation
of Game Levels Based on Controllable Wave Function Collapse Algorithm. In
International Conference on Entertainment Computing. Springer, 37–50.

[4] Kynan Sorochan et al. [n.d.]. Reference Code. https://github.com/KynanS/
Generating-Lode-Runner-Levels-by-Learning-Player-Pathswith-LSTMs

[5] Matthew Guzdial, Nicholas Liao, and Mark Riedl. 2018. Co-creative level design
via machine learning. arXiv preprint arXiv:1809.09420 (2018).

[6] Matthew Guzdial and Mark Riedl. 2016. Toward game level generation from
gameplay videos. arXiv preprint arXiv:1602.07721 (2016).

[7] Ian Horswill. 2019. Imaginarium: A Tool for Casual Constraint-Based PCG. In
Proceedings of the AIIDE Workshop on Experimental AI and Games (EXAG).

[8] Diederik P. Kingma and Jimmy Ba. 2017. Adam: A Method for Stochastic Opti-
mization. arXiv preprint arXiv:1412.6980.

[9] Antonios Liapis, Gillian Smith, and Noor Shaker. 2016. Mixed-initiative content
creation. In Procedural content generation in games. Springer, 195–214.

[10] Han Cheol Moon, Tasnim Mohiuddin, Shafiq Joty, and Xu Chi. 2019. A unified
neural coherence model. arXiv preprint arXiv:1909.00349 (2019).

[11] Justin Mott, Saujas Nandi, and Luke Zeller. 2019. Controllable and coherent level
generation: A two-pronged approach. In 6th Experimental AI in Games Workshop
at AIIDE 2019.

[12] Anurag Sarkar, Adam Summerville, Sam Snodgrass, Gerard Bentley, and Joseph
Osborn. 2020. Exploring level blending across platformers via paths and af-
fordances. In Proceedings of the AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment, Vol. 16. 280–286.

[13] Anurag Sarkar, Zhihan Yang, and Seth Cooper. 2020. Controllable level blending
between games using variational autoencoders. arXiv preprint arXiv:2002.11869
(2020).

[14] Adam M Smith, Erik Andersen, Michael Mateas, and Zoran Popović. 2012. A case
study of expressively constrainable level design automation tools for a puzzle
game. In Proceedings of the International Conference on the Foundations of Digital
Games. 156–163.

[15] Sam Snodgrass and Santiago Ontanón. 2013. Generating maps using markov
chains. In Proceedings of the AAAI Conference on Artificial Intelligence and Inter-
active Digital Entertainment, Vol. 9.

[16] Sam Snodgrass and Santiago Ontañón. 2014. Experiments in map generation
using Markov chains.. In FDG.

[17] Sam Snodgrass and Santiago Ontañón. 2014. A hierarchical approach to generat-
ing maps using markov chains. In Proceedings of the AAAI Conference on Artificial
Intelligence and Interactive Digital Entertainment, Vol. 10.

[18] Sam Snodgrass and Santiago Ontanon. 2015. A hierarchical mdmc approach to 2d
video game map generation. In Proceedings of the AAAI Conference on Artificial
Intelligence and Interactive Digital Entertainment, Vol. 11.

[19] Sam Snodgrass and Santiago Ontanón. 2016. Learning to generate video game
maps using markov models. IEEE transactions on computational intelligence and
AI in games 9, 4 (2016), 410–422.

[20] Adam Summerville, Matthew Guzdial, Michael Mateas, and Mark Riedl. 2016.
Learning player tailored content from observation: Platformer level generation
from video traces using lstms. In Proceedings of the AAAI Conference on Artificial
Intelligence and Interactive Digital Entertainment, Vol. 12.

[21] Adam Summerville and Michael Mateas. 2016. Super mario as a string: Platformer
level generation via lstms. arXiv preprint arXiv:1603.00930 (2016).

[22] A. Summerville, Shweta Philip, and M. Mateas. 2015. MCMCTS PCG 4 SMB :
Monte Carlo Tree Search to Guide Platformer Level Generation.

[23] Adam Summerville, Sam Snodgrass, Matthew Guzdial, Christoffer Holmgård,
Amy K Hoover, Aaron Isaksen, Andy Nealen, and Julian Togelius. 2018. Proce-
dural content generation via machine learning (PCGML). IEEE Transactions on
Games 10, 3 (2018), 257–270.

[24] Adam James Summerville, Sam Snodgrass, Michael Mateas, and Santiago Onta
n’on Villar. 2016. The VGLC: The Video Game Level Corpus. Proceedings of the
7th Workshop on Procedural Content Generation (2016).

[25] Sarjak Thakkar, Changxing Cao, Lifan Wang, Tae Jong Choi, and Julian Togelius.
2019. Autoencoder and evolutionary algorithm for level generation in lode runner.
In 2019 IEEE Conference on Games (CoG). IEEE, 1–4.

https://github.com/KynanS/Generating-Lode-Runner-Levels-by-Learning-Player-Pathswith-LSTMs
https://github.com/KynanS/Generating-Lode-Runner-Levels-by-Learning-Player-Pathswith-LSTMs

	Abstract
	1 Introduction
	2 Related Works
	3 System Overview
	3.1 Data extraction
	3.2 Path generation
	3.3 Level Structure Learning
	3.4 Complete Level Generation

	4 Quantitative Evaluation
	5 Qualitative Results
	6 Qualitative Evaluation
	7 Results
	8 Discussion
	9 Conclusions
	Acknowledgments
	References

