
A Procedural Approach for Infinite Deterministic 2D Grid-Based World
Generation

Tanel Teinemaa
IT University of Copenhagen

Rued Langgaards Vej 7
Copenhagen, Denmark

ttei@itu.dk

Till Riemer
IT University of Copenhagen

Rued Langgaards Vej 7
Copenhagen, Denmark

tilr@itu.dk

Noor Shaker
Center for Computer Games

Research
IT University of Copenhagen

Rued Langgaards Vej 7
Copenhagen, Denmark

nosh@itu.dk

ABSTRACT
In this paper we introduce a constructive approach for infinite de-
terministic content generation for 2d grid-based world games. We
present our game Crowdbeam and the underlying framework imple-
mented to generate its content. Our approach relies on a generic
layer-based framework that eases implementation and future exten-
sion. In the current version, the system is composed of four layers
that allow real time generation of a wide range of content variations
while preserving deterministic outcomes when seeded with the same
parameters. We rely on a combination of methods such as agents and
Cellular Automata to smooth the content and to handle soft transi-
tions between the parts of the world. We present the framework and
the methods used and we discuss the integration into the game. We
finally provide a preliminary analysis of the results.

Keywords
Procedural Content Generation, Video Games, Infinite World Gen-
eration, Constructive Methods, Agent-based Methods, Cellular Au-
tomata

1. INTRODUCTION
Procedural world generation is a concept that has been used in many
games to automatically create variations of game levels for players to
explore. Several methods have been discussed for this purpose with
varying degrees of satisfactory results. With the rise of open sandbox
games however, as for instance Minecraft by Mojang [8] or Terraria
by Re-Logic [10], the importance of efficient, infinite world genera-
tion that is deterministic, but also non-repetitive and interesting has
come into focus.

During the last years, the rise of online games that can be played on
the majority of consoles and devices has become apparent. While
this gives many players the possibility to start a quick game session
at any time or place, the challenges to create huge and persistent
worlds in real-time are increasing equally. Sandbox games require a
semi-infinite-sized world that does not necessarily need to be deter-
ministic. Multiplayer games on the other hand can not be stochas-
tic as players sharing the same session need to have the same view

of the environment. Moreover, when targeting mobile devices and
browsers as platforms, one will be faced with streamlined technical
performance requirements that do not allow for a transformation of
pre-generated game assets.

This paper proposes a system to tackle the challenges of the online
creation of infinite deterministic game worlds. For this purpose, we
implemented a world generator for a proof-of-concept game named
Crowdbeam, which, by making use of a sophisticated layered system,
contextual abstraction of the layers and multiple types of constructive
methods, fulfills these challenges and results in a system with great
potential for future extensions.

The paper is organized as follows. The next section describes the
theoretical background of the research. Following up, the proposed
game idea on which the concept is examined is introduced in Sec-
tion 3. In Sections 4 and 5 we explain the methods and algorithms
and their integration into the concept. Section 6 presents the results
and put them in relation to the described goals. Finally, Section 7
gives an overview of possible future directions.

2. BACKGROUND
Procedural Content Generation (PCG) is a flourishing area of re-
search with many exciting applications and directions. The work
in this area started as an approach to overcome storage and memory
limitations of early games hardware. Recently, however, PCG meth-
ods are being developed for many other reasons such as providing
variations, personalized and infinite content. The field thrives with
several successful implementations of PCG methods in different re-
search and commercial areas. Hastings et al. [6] present a system for
automatic generation of personalized weapons in a Galactic Arms
Race game while in [18] the method is used to generate personalized
tracks for a car racing game and in [13, 12] to personalize content
generation in Super Mario Bros.

Different techniques have been explored to automatically generate
different aspects of content [11] and some of them achieved remark-
able results in commercial games. Diablo[3], for instance, features
procedural generation for creating the maps, the type, number and
placement of items and monsters. Civilization IV [5] allows unique
gameplay experiences by generating random maps and Minecraft
[8] is one of the recent popular indie games that features extensive
use of PCG techniques to generate the whole world and its content.
Spelunky [20] is another notable 2D platform rogue-like indie game
that utilizes PCG to automatically generate variations of game levels.

The recent literature on PCG identifies PCG-based game design as



one of the promising visions for future PCG systems [11]. This sub-
field refers to systems that do not function without PCG which acts as
the core for content creation. Very few examples related to this cat-
egory can be found in previous research. Examples include Galactic
Arms Race [6] and Endless Web [14]. These games however could
still function without PCG.

In the system we propose in this paper, PCG plays an essential role in
content generation without which the implemented game could not
exist. While doing our research, we looked closely at how two of
the big names in modern sandbox games, Minecraft and Terraria,
have implemented their solutions. However, finding technical de-
scriptions of the solutions used in commercial games is not easy, as
most game studios use in-house proprietary solutions. There seems
to be a combination of different approaches apparent in both and sim-
ilar titles, but details on their methods were not made publicly avail-
able. Therefore, this paper strives to be an example for a sandbox
world generation approach for developers interested in implementing
similar concepts, and for researchers interested in further advancing
the state-of-the-art of the use of PCG in games.

However, outside of big game development studios, a number of re-
search proposals are available that describe general methods of im-
plementing world generators. Many adaptations of Minecraft-like
level generation have used methods such as fractals for the creation
of small regions, as described by Tippetts [15], or for cave generation
as presented by Cui et al. [4]. Tippetts also describes the division of
chunks into regions with a certain configuration of block types, as is
probably used in Minecraft [17, 16]. The work in this paper is in-
spired and informed by this work and builds on it to provide a full
description implemented in a playable game.

3. GAME DESIGN: CROWDBEAM
The motivation of this project mainly comes from the need for a
procedural world generation method for a game called Crowdbeam1.
Crowdbeam is a 2D voxel-based sandbox game with soft-body physics.
Its gameplay is influenced by Terraria and Minecraft, but it adds an
extra layer of challenge through the physical and destructible world.
The player controls a character through the world and can mine dif-
ferent types of blocks and place them somewhere else, similar to Ter-
raria, but the danger of falling through unsafe ground or being buried
under collapsing constructs is always apparent.
The game uses PCG methods for generating the infinite world and as
it is destined to be expanded for a multiplayer version, a deterministic
world generation approach is required, i.e. the game world should be
generated with pseudo-random seeds (which preserve endless con-
tent), but still offer the same content to all players. This is also
a common requirement in commercial games that feature PCG [7].
The generation method should also permit ease of extensions as the
game is still under development and new concepts are being added
over time.

4. METHODOLOGY
In what follows, we describe the two main methods implemented for
world generation in our game. Details about their implementation
are given in Section 5.

4.1 Chunk-Based Generation
A typical method for infinite world generation, that has been em-
ployed in a number of infinite sandbox games, is a solution that di-
vides the world into chunks and then generates individual chunks at
1The current version of the game can be found at
http://www.crowdbeam.net - the source code of the world gen-
eration part is available at http://github.com/teinemaa/worldgen2d

run-time as needed [15]. Such systems usually use some form of
overarching system that keeps neighboring chunks similar and en-
sures smoothness of the adjacent edges so that the player will not
feel a sudden change. Example approaches include applying a se-
ries of noise maps or other forms of generated dividing structures
— typically using Perlin Noise, fractals, Voronoi clusters or Cellular
Automata (CA) — that are usually used as a base for that particular
chunk or series of chunks. Further noise maps or smoothing func-
tions can later be applied. Objects and other features can then be
added based either on noise maps or on some other forms of ran-
domization.

The chunk system can further be implemented as multi-layered, where
each chunk can be made up of other smaller chunks that can then
represent features within the main chunk. For example, a chunk de-
signed to be an underground chunk may contain other more detailed
ones designed as iron ore and/or a cave chunk. In this way, arbi-
trary compositions of methods working on different layers becomes
possible, an advantage already suggested by Togelius et al. [19].

4.2 Agent-Based Generation
Using Agent methods to generate content for game levels is gener-
ally implemented using a single or multiple agents that traverse an
initially empty level area and "dig" out space based on predefined
behaviors [9]. There are many different ways to implement such
agents and there are just as many AI behaviors to consider. In all ap-
proaches however, the agent starts at a certain point on the map and
moves either randomly or in directed ways while applying changes
to the map. The behavior defined in most of these methods is typi-
cally rather unpredictable, but it can result in more organic looking
regions, depending on how it has been defined.

5. IMPLEMENTATION
This section provides details about our implementation of the differ-
ent methods used to generate content for our game.

5.1 Level of Detail
In order to enable multiple abstraction layers of content and context
granularity, we introduced a layered system that eases world gener-
ation and future extensions. Our system constitutes of four indepen-
dent layers. The basic layer is composed of the smallest element of
the world, the single block. A collection of blocks then forms a clus-
ter. Clusters of different types form chunks which are in turn grouped
to form a region. Finally, the world is a collection of regions.

A block represents the material information of a single geographic
entity. Clusters are a small set of blocks that share the same ground
material, e.g. there can be clusters of rock, mud or emptiness. The
actual appearance of the blocks in the game is driven by the combi-
nation of the properties of the region and the cluster they belong to -
for instance, a cluster of trees in a desert region looks different than
one in an arctic region. Structuring the game in this hierarchy allows
sub layers to inherit the properties and information from the layers
in the upper levels. This structure also permits easy extensions in the
future by simply plugging new layers in.

In the next section, we provide more details about each layer and how
they are combined to construct the world.

5.2 World Generation



Figure 1: A screenshot from the game showing the different lay-
ers. The small black block marks the block that is requested for
rendering, which initiates the chunk generation process (marked
with the black rectangle). The red dots are the regions’ center
points from the first layer. The smaller violet points are the clus-
ters’ center points from the second layer. Clusters are assigned
to regions, as visualized by the black arrows, and blocks are as-
signed to a cluster, as indicated by the green arrow. On top of
that runs the clipping function, the CA and agents, which are
not visualized.

As discussed earlier, in order to handle infinite world generation, the
approach handles the creation of only a small portion of the world
and extends it as needed. This requires a method to handle world di-
vision, i.e. dividing the world into regions that can be built individu-
ally and independently of the rest of the world; yet can be effectively
combined to form the complete world. In our implementation, we
use Voronoi diagrams as a segmentation method applied on a num-
ber of predefined layers. The boundaries of each region (with all its
sub layers) are defined by the Voronoi cells.

Because the world is organized in layers, world generation can be
done starting at the smallest element, the block, and recursively mov-
ing up in the layered hierarchy until we reach our largest element, the
regions. More specifically, whenever a block is requested for ren-
dering, we initiate the chunk generation process which defines the
boundary of the area we are currently creating. In order to know the
exact characteristics of each block to be rendered, we refer to the
cluster and the region to which the block belongs.

Notice that in this process, the defined layers in our hierarchy serve
for two separate purposes when generating the world; while the chunks
draw the actual layout boundaries, the clusters and the regions define
invisible outlines and they are used to store and organize property
information of the inherited layers. If we are to dig into more details,
the world generation process can be described as in Algorithm 1 (a
visual illustration can be seen in Fig. 1):

The first step ensures deterministic outcome when generating differ-
ent chunks and when regenerating the same ones. A predefined size
is given to a chunk and in order to find the closest cluster and region,
we rely on distances to generated Voronoi points that define the cen-
ters of regions and clusters. Note that whenever we generate a chunk,
we also initiate the process of generating the directly adjacent neigh-
boring chunks to handle the transition between them and to ensure
smoothness.

The method also integrates a number of global functions, which get
executed after determining the regions and the clusters and during
the generation of a chunk. These can be used for defining ground
curves according to certain desired features. As an example, there is
a function implemented that clips out the ground level of the world

Algorithm 1 World generation process
For a given block bg to be visualised:
Seed the chunk ci to which the block belongs with a seed and an index
Determine the boundaries of ci
Generate the centres of the regions within ci
Generate the centres of the clusters within ci
for (each block bi in ci) do

Check to which cluster li the block belongs and determine the type of
the block accordingly
Check to which region ri the cluster li belongs and update the bi type
accordingly

end for
Repeat the above process on the directly adjacent chunks to ci
Apply a set of clipping functions to define the ground boundaries (separa-
tion from the sky)
Apply cellular automata steps inside the chunk and across its borders
Run agents from a set of starting points, determined by the chunk’s seed,
inside the chunk and across the borders

(a) Initial blocks generation (b) Ground clipping

(c) Cellular automata (d) Agents working on the
center and adding trees

(e) agents working across
borders and adding trees

Figure 2: The procedure followed for world generation (the fig-
ure includes four chunks belonging to different regions).

with a couple of parameters, in order to make the ground more in-
teresting and passable. There could also be other clipping functions
added such as various cave structures or a water/ lava ground level
similar to those in Terraria.

In the following sections, each of the remaining steps is presented in
detail. A figure illustrating the highlights of the world generation can
be seen in Fig. 2.

5.3 Cluster Generation
According to the procedure illustrated in Algorithm 1 above, the
clusters must be identified in order to correctly assign the properties
of each block. Cluster centers are defined when the chunk generation
process is initialized. Voronoi diagrams are used to define the bound-
aries of each cluster (a collection of blocks of the same type). When
assigning a type to a block, the distances to the centers of the clusters
within the chunk are calculated and the block is assigned the type of
the cluster with the smallest distance, as can be seen in Fig. 1.

5.4 Region Generation



(a) (b) (c)

(d) (e) (f)

Figure 3: The procedure followed to execute the agents to smooth
the the transitions between chunks. A similar concept is used for
the execution of Cellular Automata.

An additional layer of Voronoi is used to create regions [2]. Each
cluster simply gets assigned the closest region type (see Fig. 1 for
illustration).

The possible region types are predefined and called biomes, and can
have their own parameters, types, cluster materials and cluster prob-
abilities. The Poisson distribution function is used to distribute the
Voronoi points of the regions, which allows for a naturally random
distribution of points over the whole world space [1]. Each region
has assigned a range of different Cellular Automata, which can be
used with different probabilities defined by the game designer, in or-
der to create interesting variations and effects such as erosion. The
process of generating the regions’ Voronoi points is initiated when
the chunk generation process starts. Some of the points might al-
ready be created during the creation of other neighboring chunks and
the current chunk might create some extra ones.

The regions are also equipped with different kinds of agents, which
are executed with user-defined probabilities and ranges. Their goal is
to further refine the terrain and add high level content. While the pre-
vious generation steps mostly shape the main terrain structure, these
agents spice up the terrain and can be instantiated and used in various
ways, e.g. for generating trees, dungeons, lakes, clouds or just to add
some random noise. In the proof of concept game version, we use
two types of agents for tree generation and for creating mineral ores.

5.5 Handling Border Areas
The previous discussion explores the generation of individual pieces
of the world. However when putting these pieces together, extra care
needs to be taken to ensure smooth transition from one piece to an-
other. One should also keep in mind that the outcome should be
deterministic.

A chunk is depending on its neighbor chunks and in order to guar-
antee deterministic results, we implemented a deterministic method
relying on agents and Cellular Automata. Specifically, we use pa-
rameterized agents that work on the borders and the center of the
chunks, and we apply a CA beforehand to smooth the terrain. The
agent-based method, as seen in Fig. 3, works as follows:

We start with the current chunk, ci, that is being generated (Fig. 3.a).

Figure 4: Screenshot highlighting structural differences between
two adjacent regions.

The inner blue square marks the area that agents are allowed to be
spawned within. The agents are initialized with a maximum radius of
1
4

of the chunk size to ensure that they remain inside the chunk’s bor-
ders. Now in order to guarantee deterministic outcomes and smooth
transform from one chunk to its neighbors, this step is performed
also on the eight directly adjacent chunks to the one we are currently
generating (Fig. 3.b). This is followed by spawning border agents on
the left and right borders of the current chunk as shown in Fig. 3.c.
A combined seed of the current and the neighbor chunks is used by
the agents and the process is repeated for each of the adjacent chunks
as can be seen in Fig. 3.d. After this step, diagonal border agents are
spawned on the four corners of the chunk as illustrated in Fig. 3.e.
Finally, the upper and lower areas are smoothed (Fig. 3.f).

The above described procedure results in smoothing all parts of a
chunk separately, yet in a specific order and using combined seeds
that guarantee deterministic world generation. Notice that when one
of the neighbor chunks is later requested for rendering, part of the
blocks belonging to that chunk will be already generated and the pro-
cess continues to create only the missing part.

6. RESULTS
The implemented proof of concept shows that the combination of
methods allows for a deterministic, theoretically infinite-scaled world
generation, and enables enough variation and control for a commercial-
scoped game.

The world generation was tested with different starting locations and
screenshots of the same world location were later compared to ensure
that different world generation paths would still lead to the same re-
sults. Since the results matched, it is likely that the world generation
is in fact deterministic. We are considering to implement a stochastic
evaluation method in the future to be able to validate the approach
more thorough.

In order to analyze the outcome of our method, we also looked at
different screenshots from different regions from the world. An ex-
ample screenshot is shown Fig. 4. The analysis highlighted the visual
advantages and disadvantages of using Voronoi for clustering.

The use of Voronoi for the generation of structures allows for a cer-
tain degree of variation, however it is not possible to have caves with
completely different styles, e.g. long, tiny caves along with big hol-
low ones. Instead, Voronoi-based structures tend to have cluster-like
shapes. Therefore, a more promising alternative for structure gen-
eration could be to rely on global functions or more powerful agents
with bigger radii that permit more unpredictable results. It could also
be possible to have a variable frequency of Voronoi points across the
world, to allow for more contrasts. The use of a low frequency of
Voronoi points would lead to rather straight lines while a high fre-
quency will result in cluttered landscapes and rock formations.



Figure 5: Snapshots taken from the same position in the game
generated with different seeds.

In order to give some insight on the variations provided by our method,
Fig. 5 presents three snapshots taken from the same position in the
game generated using different seeds.

6.1 Computational performance
In order to show the efficiency of our approach, we report some
statistics about the time required for world generation. We ran ex-
periments on a PC of the current standard; the PC runs an Intel(R)
Core(TM) i7-2630QM CPU 2.00GHz with 6GB RAM and we use
Microsoft Windows 7 Professional 64-bit.

For a chunk size of 48 x 48 blocks, the system takes approximately 4
seconds on average to complete the block generation for the genera-
tion of the initial chunk, where all neighbors will be partially gener-
ated as well. This can thus be seen as the worst case. The execution
time for the later generation of chunks was an average of one second,
as the neighbors had already been partially generated before. The
world generation was also able to keep up with the camera moving
25 blocks per second to the right. The world generation is executed
using multiple threads and the next call is triggered as soon as the
camera gets close to the borders of the current chunk, which enables
for overhead computation in the background and eliminated a pos-
sible undesirable decay. The memory usage is constantly low and
very reasonable for a standard PC, which is permitted by deleting
unnecessary chunks that are far from the current player position. In
practice, no performance problems with the approach have been ob-
served on the reasonable modern PC configuration.

7. DISCUSSION AND CONCLUSIONS
This paper proposes the use of a layer-based system for infinite de-
terministic world generation. The layers define the level of detail of
the world and are organized in a hierarchical order that permits in-
formation inheritance. Different methods are implemented to work
on one or multiple layers. The methods are properly seeded and ex-
ecuted with predefined order to ensure deterministic outcome when
necessary. The results show that infinite variations of content can in-
deed be generated. The proof of concept game proposed proves that a
combination of simple generation methods in an intelligent way can
lead to sophisticated results and interesting, varied and sometimes
surprising level constructs. The implemented abstraction system and
the possibility to add new custom layers make the approach easy to
adjust and control for game designers. The implemented prototype
is already being used by players and is a valuable inspiration for all
kinds of voxel-based 2D games that require infinite or very big de-
terministic worlds.

There are some main areas with potential future extensions. For in-
stance, it would be desirable to increase the number of regions, Cel-
lular Automata and agents, that go beyond a proof of concept and
enrich the game worlds with new or expanded structures. Possible
ideas for additional agents could be dungeons, castles, lakes, clouds,
items, or even spawn positions of NPCs. Cellular Automata could
be added for different kinds of erosion, lava streams or mineral ores.
Probabilities of spawning of certain agents could also be contextually
adjusted within a region, e.g. flowers could have a higher probabil-
ity of spawning next to trees. In addition to that, more sophisticated
global functions could be added, e.g. for different types of ground
lines, interesting cave formations or level-wide style choices (e.g. a
candy-level, a Halloween-level, etc.).

8. ACKNOWLEDGMENTS
Many thanks to Trond Glomnes and Michal Krolikowski for the con-
tinued development of Crowdbeam.
The research was supported in part by the Danish Research Agency,
Ministry of Science, Technology and Innovation; project "PlayGALe"
(1337-00172).

9. REFERENCES
[1] A. H. Ang and W. H. Tang. Probability concepts in

engineering. Planning, 1(4):112–117, 2004.
[2] F. Aurenhammer. Voronoi diagrams - a survey of a

fundamental geometric data structure. ACM Comput. Surv.,
23(3):345–405, Sept. 1991.

[3] Blizzard North, 1997. Diablo, Blizzard Entertainment, Ubisoft
and Electronic Arts.

[4] J. Cui. Procedural cave generation. 2011.
[5] Firaxis Games, 2005. Civilization IV, 2K Games & Aspyr.
[6] E. J. Hastings, R. K. Guha, and K. O. Stanley. Evolving

content in the galactic arms race video game. In Proceedings
of the 5th international conference on Computational
Intelligence and Games, CIG’09, pages 241–248, Piscataway,
NJ, USA, 2009. IEEE Press.

[7] G. W. Lecky-Thompson. Infinite Game Universe:
Mathematical Techniques. Charles River Media, Inc., 2001.

[8] Mojang. Minecraft, 2009.
[9] J. T. R. L. Noor Shaker, Antonios Liapis and R. Bidarra.

Constructive generation methods for dungeons and levels
(DRAFT). 2014.

[10] Re-Logic. Terraria, 2011.
[11] N. Shaker, J. Togelius, and M. J. Nelson. Procedural Content

Generation in Games: A Textbook and an Overview of Current
Research. Springer, 2015.

[12] N. Shaker, J. Togelius, and G. N. Yannakakis. Towards
automatic personalized content generation for platform games.
In Proceedings of the AAAI Conference on Artificial
Intelligence and Interactive Digital Entertainment (AIIDE).
AAAI Press, 2010.

[13] N. Shaker, G. N. Yannakakis, and J. Togelius. Towards
player-driven procedural content generation. In Proceedings of
the 9th conference on Computing Frontiers, pages 237–240.
ACM, 2012.

[14] G. Smith, A. Othenin-Girard, J. Whitehead, and
N. Wardrip-Fruin. Pcg-based game design: creating endless
web. In Proceedings of the International Conference on the
Foundations of Digital Games, pages 188–195. ACM, 2012.

[15] J. Tippetts. More on minecraft-type world gen, 2010.
[16] J. Tippetts. 3d cube world level generation, 2011.
[17] J. Tippetts. More procedural voxel world generation, 2011.



[18] J. Togelius, R. De Nardi, and S. M. Lucas. Making racing fun
through player modeling and track evolution. 2006.

[19] J. Togelius, T. Justinussen, and A. Hartzen. Compositional
procedural content generation. In Proceedings of the The Third
Workshop on Procedural Content Generation in Games,
PCG’12, pages 16:1–16:4. ACM, 2012.

[20] D. Yu and A. Hull, 2009. Spelunky, Independent.


