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Figure 1: A road network generated using our parametric (upper half) and patch-based (lower half) methods.

ABSTRACT
A road network is one of the core elements of urban environments,
strongly defining their layout. Procedural modeling has been in-
creasingly used to create such road networks. However, many pro-
cedural methods are complex and difficult to master by non-experts,
often have a limited and hard-to-control expressive range, and re-
quire a variety of specialized input data to generate a complex
road network. To mitigate this, some methods proposed to use
stochastic data on road patches extracted from example maps to
design a road network following a given urban style. We propose
a novel patch-based method that uses the semantics of individual
patches to help guiding the procedural generation. Our approach
combines the advantages of patch-based generation with those of
conventional parametric methods. Due to the intuitive character of
semantic parameters and tags, our approach provides for an easy
customization of fictive road network creation, allowing a user to
easily define various types of road network styles, containing only
the desired features and structures of real-world road networks.

CCS CONCEPTS
• Computing methodologies → Computer graphics; Shape
modeling;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
FDG’17, August 14-17, 2017, Hyannis, MA, USA
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5319-9/17/08. . . $15.00
https://doi.org/10.1145/3102071.3110569

KEYWORDS
Patch-based network generation, Urban modeling, Procedural con-
tent generation

ACM Reference format:
Edward Teng and Rafael Bidarra. 2017. A semantic approach to patch-based
procedural generation of urban road networks. In Proceedings of FDG’17,
Hyannis, MA, USA, August 14-17, 2017, 10 pages.
https://doi.org/10.1145/3102071.3110569

1 INTRODUCTION
Building small scale urban virtual environments by hand is a viable
option, but for environments with a large amount of objects or
structures, it is a tedious work. To assist artists in tackling this up-
scaling problem, procedural modeling techniques have been often
utilized.

Several procedural modelingmethods have been proposed to gen-
erate road networks, ranging from simple grid patterns to complex
and realistic urban styles. However, procedural content generation
can be difficult for users with no knowledge of modeling city lay-
outs. In addition, the controllability of the generator is often poor
and non-intuitive.

1.1 Related work
Researchers have proposed various procedural methods for mod-
eling road networks, e.g. template-based (Sun et al. [16]), tensor-
based (Chen et al. [2]) and agent-based (Lechner et al. [7], [6]). Kelly
and McCabe [4] and Smelik et al. [14] discuss several procedural
modeling methods, including their pros and cons.

Parametric and example-based methods are the most related
to our approach. Parish and Müller [10] adapted the idea of L-
systems (Prusinkiewicz and Lindenmayer [11]) to generate large

https://doi.org/10.1145/3102071.3110569
https://doi.org/10.1145/3102071.3110569


FDG’17, August 14-17, 2017, Hyannis, MA, USA E. Teng and R. Bidarra

cities, including their road networks. To achieve more realistic
cities, typically a number of input maps and statistical data from the
real world has to be given. Although parameters can be specified
to modify the road network, it is not always clear nor intuitive
how these parameters affect the network. Kelly and McCabe [5]
proposed an approach where the user first creates the primary road
network and a growth-based algorithm generates the secondary
road network within the region(s) defined by the primary roads.
For this, they provide a set of predefined generation parameters,
e.g. grid, industrial and suburban, that facilitates creating road
networks.

Aliaga et al. [1] introduced a parametric, stochastic example-
based approach. Instead of having the user specify the generation
parameters, this approach obtains the parameters, such as inter-
section type, street length and tortuosity, from input examples.
Another example-based approach was introduced by Nishida et al.
[8]. Instead of only using parameters, this approach mainly uses
patches (interesting arterial and local road structures) extracted
from example maps taken from OpenStreetMap [9]. This allows the
user to create realistic detailed road networks containing complex
structures. However, this approach uses the patch as-is, it does
not allow individual patch rotation, deformation or scaling, thus
lacking flexibility. Furthermore, even though the method uses some
information on the patch, such as the type of streets (e.g. arterial or
local), many more properties of a patch can be identified that are
useful for the road generation process.

1.2 Contributions
We present a novel semantic approach that combines a patch-
based method with the advantages of a parametric method for the
customized generation of fictive road networks. The patch-based
method enables the creation of road networks with complex struc-
tures, while the parametric method provides a convenient fall-back
mechanism, and allows for the generation of more ‘standard’ road
networks, e.g. grid and suburban styles. For each patch used, fea-
tures are identified which embody some patch function or meaning,
and are very useful for the controllability of the road generation
and for its expressive power. We call this information the patch se-
mantics. These features can be related to individual patch elements
(e.g. a vertex or street segment) or to the patch as a whole.

With our approach, we solve two major challenges: seamlessly
integrating patch-based and parametric methods in a controllable
and intuitiveway, andmore importantly, representing the semantics
of a patch and defining how this semantics can be utilized by a
procedural generator. Hence, our contributions are the following:
• The use of patch semantics to help guiding a patch-based road

network generator
• A controllable parametric road generation method with a high

expressive power
• A high level settings scheme that allows non-experts to easily

create and modify road networks
We implemented our approach in a fully functional prototype,

that has been described elsewhere [17]; some of its features are
also described in a short video, illustrating the flexibility of the
interactive creation of various road networks, and a walk-through
on its results. Our system allows for a very customized generation

of large and complex road networks, that can be exported and
loaded into any modeling system for further urban development,
e.g. allotment and building generation. In order to quickly build a
variety of 3D environments for our direct application domain, we
used the procedural engine Sceelix [12], due to its very convenient
node-based approach [13].

2 OVERVIEW
Road networks without crossovers or viaducts can be represented
as a planar geometric graph in which each vertex can be seen as a
point in a road network (such as an inflexion or an intersection),
and each edge as a street (segment) connecting those vertices. Real-
world road networks consist of (at least) main and local streets:
main streets provide rapid displacement and access by connecting
different areas, while local streets grow into (e.g. residential) local
areas, providing access to the nearest main streets. In our geometric
graph, main streets define a space partition into main cells; within
each main cell, local streets (may) define local cells.

Our approach proposes the definition, representation and use
of patch semantics and the integration of patch-based and para-
metric methods to generate road networks. The pipeline of this
approach can be divided into two main phases: main- and local
street generation, as depicted in Figure 2.

In the first phase, main streets are generated using a parametric
graph growing algorithm, inspired on Kelly and McCabe [5]. The
selected area is populated according to the available parameters:
street length and its deviation range, minimum street length, vertex
degree range, minimum street angle, angle deviation range and
snap radius, see Figure 3. Presets can be defined to easily generate
a specific type of a road network. Unlike Nishida et al. [8], we
chose to use parametric instead of patch-based generation for main
street generation, as it yields quite suitable cells and avoids a strong
dependency on the particular set of main road patches used.

In the second phase, we propagate the local streets within each
main cell. For this, a database of patches is first created and pro-
cessed, identifying and classifying their patch semantics. Our patch-
based method iteratively takes each (main) cell, initializes it and
grows the local road network within it, as described in the following
two paragraphs.

Cell initialization This process aims at creating a first set of start-
ing vertices for the local street propagation within a cell. Many
possible ways can be devised to achieve this; we have chosen to
attach (suitable) patches to the main streets, and grow the network
from there inwards, thus ensuring that the local streets being grown
are connected to the main streets. Patch semantics, primarily their
structure, determines which patches are suitable for this initial-
ization. Requiring this specific patch structure typically ensures a
natural transition from a main to a local street.

Network propagation The propagation process focuses on itera-
tively choosing a patch and appending it to (at least) one current
starting vertex of the local street network being grown. Naturally,
each new patch appended may bring in one or more connectable
vertices to the pool. The patch selection takes into consideration
both the network surroundings (e.g. neighboring vertices or edges,
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Figure 2: The general pipeline of our approach

Figure 3: Diagram of generation parameters. The street
length and its deviation range define the length of the road
segment being created. The angle of the segment depends
on the vertex degree, the angle of the adjacent edges and the
angle deviation range. The degree of a vertex is constrained
by the vertex degree range specified by the user. However,
when there is no growth possible, a vertex may end up hav-
ing a lower degree than the minimum (leaving e.g. a dead-
end). In this illustration, a [2-4] degree range is used. The
vertex in green has degree 2, and the vertices in red, degree
3 and 4 (also called intersection vertices). The snap radius is
used for a snap operation, which ‘shifts’ an edge to end on a
nearby vertex or edge.

available space) and each patch’s semantics (e.g. size, connectivity).
We consider two patch selection strategies when looking up a suit-
able patch: the breadth-first method, which typically propagates the
network ’sideways’ within the cell, using the new patch to bridge
two current starting vertices; and the depth-first method, which
typically propagates the network inwards into the cell, simply at-
taching a fitting patch to one starting vertex. Whenever no suitable
patch can be found (e.g. no patch fits in the available space), the
parametric growth is used instead.

3 PATCH-BASED METHOD
In this sectionwe describe inmore detail themain steps of our patch-
based approach. The method requires a database of patches as input,
in any suitable format. In our prototype system, patches for this
database can be either manually created or extracted from example
maps. For the former, we developed an interactive patch editor, that
also supports the definition of pattern elements, i.e. an assembly of
one or more patches that can be repeated in a predictable manner to
form a road pattern (as e.g. those designed in many modern urban
neighborhoods). For the latter, we implemented a patch extraction
algorithm similar to that described by Nishida et al. [2015], and
applied it to a variety of urban maps. For the purposes of this
research, a patch database can consist of any combination of the
above, no matter their origin.

3.1 Semantic identification
The semantics of a patch is classified into three categories: vertex,
edge and patch. The first two categories describe the semantic
information of individual vertices and edges of a patch, while the
patch category describes the semantics of the patch as a whole.
Patch semantics in our approach can be represented by tags on
entities of each of these categories. Any patch property that is
found useful for the road generation, or somehow meaningful for
configuring the desired output, can be defined. In our current patch
database, all the tags defined were automatically identified, based
on geometric or topological analysis, as shown in Table 1. However,
there is no objection to manually defining any additional tags on
database patches. Figure 4 depicts some patch examples for various
tags.

Each patch tag has its own purpose. The propagation process
uses snap and clip operations wherever convenient and possible.
A clip operation creates an intersection vertex at the intersection
of two edges and clips the remaining edge segment. For patches,
such operations are only applicable to snappable edges, i.e. edges
that are connected to an intersection vertex. The main or local edge
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Table 1: Patch semantic tags

Category Tag Definition
Vertex Connectable A vertex that allows connections

Intersection A vertex with at least 3 degree

Edge Dead-end An edge with no connectable
vertices

Snappable An edge that allows snapping
Main An edge representing a main street
Local An edge representing a local street

Patch Roundabout A patch with a circular intersection

Loop A patch with one or more closed
areas

Cul-de-sac A patch with one or more dead-end
edges

Curved A patch with segments forming
a curve

Straight A patch with only straight
segments

Terminal A patch with only one connectable
vertex

Initial A patch suitable for initializing
the propagation process

Figure 4: Examples of patches with different semantic tags.
A blue dot represents a connectable vertex and a red line rep-
resents a main street.

property is used to indicate whether and how a patch can be used
for initialization.

Some patch tags indicate geometric or topological properties, as
e.g. Roundabout, Loop, Cul-de-sac, Curved and Straight. In order to
control the patch-based generation, patches with such tags can be
filtered out. For example, a Terminal patch, by definition, prevents
any further propagation as it adds no connectable vertices to the
pool. Thus, in general, it is only applied when there is a limited area
left. As another example, an Initial patch consists of a straight main
street edge and an attachment, i.e. a connected set of local street
type edges with at least one connectable vertex. In this way, it can

Figure 5: Different methods to initialize a cell. (1) The se-
lected main cell. (2) Initialization using patches on main
streets. The red dots represent connectable vertices. (3) Ini-
tialization using a pattern on a main street. Notice that the
pattern (in blue rectangle) does not have a connectable ver-
tex, so an additional patch (in purple rectangle) is added to
supply connectable vertices. (4) Initialization using a pat-
tern between main streets.

be deployed during the initialization phase of a main cell (and, of
course, also during network propagation).

3.2 Cell initialization
In this process, initial patches are inserted onto a main cell, in
order to produce the first set of starting vertices to be used in
the propagation process. Among the various possible methods to
achieve this, we implemented the following three, available for the
designer to choose from (see also Figure 5).

Patches on main streets This method places patches with Initial
tag on main streets of the cell, see Figure 5.2. Seed points, i.e. main
street positions to be used for patch placement, are calculated so
that patches are properly distributed over the main cell perimeter.
For every seed point, an Initial patch is randomly chosen, after
which it is translated to the seed point, rotated such that the main
streets (of patch and seed point) are aligned.

Pattern on a main street This method creates and adds a pattern
on a main street, see Figure 5.3. To form a pattern, a pattern element
has a scale and a multiplier. The scale indicates the scaling of the
element and the multiplier determines how many times the scaled
element is replicated. To add the pattern to the graph, the element
is scaled and repeated according to mentioned values, and then
rotated and translated such that the pattern lies on the desired main
street. If the pattern does not contain any connectable vertex, a
main street that lies far from the pattern is initialized with an initial
patch, in order to increase the space and chances of propagation in
that cell.

Pattern between main streets Another method is to place a pat-
tern across two main streets, see Figure 5.4. The seed points for
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the start and end vertices of the pattern are placed in the middle
of each main street pair to minimize unnecessary obstacles for the
pattern placement. The procedure to find a base pattern is fairly
similar to the previous method, except that the line connecting the
seed points is used instead of a main street.

3.3 Network propagation
The propagation process populates a main cell with local streets, by
iteratively attaching a patch to the vertex currently being used for
the propagation. For this, we maintain a pool of candidate starting
vertices in a queue, which was first populated during cell initializa-
tion, and is subsequently grown with the connectable vertices of
each new patch appended to the network; see Algorithm 1. First,
the next current vertex is popped from the queue, and a check is
done on the feasibility of attaching a patch to it. This check takes
into account possible constraints on the current vertex degree as
well as on the actual space available in the computed propagation
direction. Next, after filtering out patches that would not fit the
available space, two patch selection methods are successively at-
tempted: (i) breadth-first, that checks whether there is a patch that
can connect the current vertex to a nearby vertex; and (ii) depth-
first, that searches for a patch that can be simply appended to the
current vertex of the network. For both methods holds that only
valid patches, i.e. complying with the user-defined parameters and
constraints, can be used and appended to the network. If none of
the methods finds a suitable patch for the current vertex, parametric
growth is used instead, as a fall-back method.

Algorithm 1 Network propagation

1: Input: graph, patches, cell
2: Output: graph
3: while graph.candidateVertices.Count >0 do
4: currentVertex ← graph.candidateVertices.pop()
5: propaдDirection ← calculate the propagation

direction for currentVertex
6: if propagDirection is valid then
7: f ilteredPatches ← filter available patches
8: if filteredPatches.isEmpty() then
9: apply parametric growth on currentVertex
10: else
11: suitablePatch ← apply Breadth-First to find a

suitable patch ▷ Algorithm 2
12: if suitablePatch == null then
13: suitablePatch ← apply Depth-First to find a

suitable patch ▷ Algorithm 3
14: if suitablePatch != null then
15: attach suitablePatch on currentVertex
16: else
17: apply parameteric-based growth on currentVertex

Propagation direction The propagation direction is an indication
ofwhich approximate direction the new patch could take, if attached
to the current vertex (the actual direction may deviate within a
given range, similar to the parametric generation). This direction
is given by the angle bisector of the largest angle formed by the

Figure 6: Determination of the propagation direction (blue
arrow) for a current vertex (in red) of different degrees: (1)
degree 1, (2) degree 2, and (3) degree 3.

adjacent edges of the current vertex. As can be seen in Figure 6, the
propagation direction depends on the degree of the current vertex.

Patch filtering This process filters available patches so that only
patches that fit the work area within the cell are eligible during the
patch selection process. The work area available for propagation,
which is typically substantial at the early stages, becomes smaller as
the propagation progresses cell inwards. As a result, more and more
large patches will not fit in that space, and can better be excluded
at the selection stage, for the sake of efficiency. We use an approxi-
mation of the work area instead of the actual work area, because
it is computationally less expensive and provides a satisfactory
estimation; see Teng [17] for details.

Breadth-first method The main purpose of this method is to find
a suitable patch that can connect the current vertex with one of the
remaining connectable vertices in the graph pool; see Algorithm 2.
Basically, the method has to search for two pairs of vertices that
are at (approximately) the same distance: (i) a graph vertex pair,
consisting of the current vertex (start) and another connectable
vertex (target) of the graph; and (ii) a patch vertex pair, consisting
of two connectable vertices (start and target) of the candidate patch.
For efficiency, patch vertex pair distances can be precomputed and
stored with the patch. All suitable solutions found (patch, patch
vertex pair, and graph vertex pair) are collected and rated. The rating
system indicates the suitability of the solution for the situation at
hand. To preserve the geometry of the patch as much as possible,
the rating depends on the difference between the patch vertex pair
distance and the graph vertex pair distance, and is given by

1 − |distancePatchPair − distanceGraphPair |
distanceGraphPair

(1)

with distancePatchPair as the patch vertex pair distance and dis-
tanceGraphPair graph vertex pair distance. Ultimately, the highest
rated solution, if any, is chosen (patch with corresponding vertex
pairs). The patch is then appended to the graph, possibly after
the necessary rotation and snapping adjustments, because in most
cases, the patch vertex pair distance will not fit exactly the graph
vertex pair distance. Several methods can be used for this, e.g. (i)
a patch snappable edge (if any) is extended or shortened so that
the patch fits perfectly between the two vertices, and (ii) compute
the patch rotation by which the distance between the two target
vertices is the shortest and let the snap operation merge them.

Depth-first method The main purpose of this method is to find
a suitable patch that can be appended at the current vertex, to
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Algorithm 2 Breadth-First

1: Input: graph, filteredPatches, currentVertex
2: Output: patch or null
3: suitablePatches← �
4: validConnectableVertices ← select connectable graph

vertices of degree 1 that are in ‘line-of-sight’
with currentVertex

5: for each vertex in validConnectableVertices do
6: distanceGraphPair ← distance(currentVertex, vertex)
7: for each patch in filteredPatches do
8: pairs ← find connectable vertex pairs in patch

at approximately distanceGraphPair of
each other (i.e. within the snap radius)

9: for each pair in pairs do
10: rotation ← compute patch rotationsuch that

the connection vertices in pair approx.
coincide with currentVertex and vertex

11: orient patch according to rotation
12: if patch is valid then
13: ratinд← calculate the rating for patch

and its pair ▷ Equation 1
14: add rating, pair and patch to suitablePatches
15: if suitablePatches.Count() >0 then
16: return the highest rated patch
17: else
18: return null

grow the network in the propagation direction (again, possibly
with some deviation); see Algorithm 3. Because here, unlike the
breadth-first method, only one connectable vertex of the patch is
used to append it to the current vertex, we calculate one rating
for each of its connectable vertices. Per patch, the base rating for
each connectable vertex is initialized at 1 and, subsequently, the
rating mechanism adjusts it according to a number of heuristics, as
follows:

• For every other connectable vertex of the patch nearby a dead-
end edge of the graph decreases the rating by 0.2;

• For every edge of the patch nearby another connectable vertex
of the graph decreases the rating by 0.2;

• For every dead-end edge of the patch that is not nearby an edge
of the graph decreases the rating by 0.2 otherwise increases the
rating by 0.1.

The first two conditions reduce the rating of that particular patch
attachment, as it could obstruct subsequent propagation. The last
condition reduces the rating to avoid the use of Cul-de-sac patches
in an open area where they could block further propagation. How-
ever, it increases the rating to promote the use of Cul-de-sac patches
where there is a limited area. The start rating, increment/decrement
values are relative due to every patch being handled similarly. How-
ever, it is important to note that the rating is penalized more heavily,
e.g. higher decrease value than the increase value, to avoid situa-
tions where propagation can be hindered.

Eventually, the patch (if any) with the connectable vertex having
the highest rating is selected as the most suitable.

Algorithm 3 Depth-First

1: Input: graph, filteredPatches, currentVertex,
propagDirection

2: Output: patch or null
3: suitablePatches← �
4: for each patch in filteredPatches do
5: for each connectableVertex in patch.connectableVertices do
6: attachDirection ← small variation on propagDirection
7: orient patch so that the adjacent edge to

connectableVertex is aligned with attachDirection
8: if patch is valid then
9: ratinд← calculate the rating for patch and its

connectableVertex
10: add rating, connectableVertex and patch to

suitablePatches
11: if suitablePatches.Count() >0 then
12: return the highest rated patch
13: else
14: return null

Constraints For the generation of plausible road networks, it is
important that every parametric road segment, as well as every
patch selected by the patch-based method, smoothly fits within
the network being generated. For the sake of plausibility, a variety
of customizable parameters and thresholds have been defined, e.g.
snap radius, minimum street angle, minimum street length and
vertex degree range. We defined the following four constraints on a
segment (or patch) that help enforce segment validity and increase
its overall plausibility:

(1) a proposed road segment must connect to a connectable vertex
or edge that lies within the snap radius of the end of the road
segment;

(2) the angle between two road segments sharing a vertex must be
higher than the minimum street angle;

(3) the length of a road segment must be longer than the minimum
street length; and

(4) the vertex degree may never exceed the maximum degree of
the specified range.

To abide by these constraints, the following connect and clip opera-
tions checks are defined, and applied whenever needed:

• Connect the road segment to the nearest vertex or create an
intersection to the nearest edge within the snap radius of the
target vertex of the proposed road segment. However, discard
the road segment whenever: (i) the angle between the proposed
and existing edges is lower than the minimum street angle; (ii)
the length of any of the split edges is shorter than the minimum
street length; or (iii) the target vertex has the maximum degree
allowed.

• Clip the road segment when intersecting another edge and insert
a vertex on the intersecting point. However, like for the connect
operation, discard the proposed road segment if (i) or (ii) hold.
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4 RESULTS AND ANALYSIS
In this section we present and discuss a variety of results achieved
by our patch-based method, and we analyze the controllability of
the parametric generator in order to discuss the expressive range
of our approach.

4.1 Results of the patch-based generator
To validate the results of the patch-based generator, we have built a
database of 98 patches, most of them extracted from real-world data
and some from manual creation. For the parametric method, the
following parameters are used: street length (50m), street length
deviation range (10m), minimum street length (20m), vertex degree
range [4-4], minimum street angle (70◦), angle deviation range (10%)
and snap radius (20m). Figure 7 shows a road network using all
available patches. By allowing designers to exclude any undesired
patch tags during the generation process, various other road net-
work with different properties and appearance can be generated,
as shown in Figure 8.

Figure 7: A road network with an area of 4 km2 generated
using the complete patch database. Main streets (red lines)
were generated using the parametric method; local streets
were generated using both patches (blue lines) and, when
needed, the parametric method (black lines).

Table 2 presents generation data about the road networks in
Figures 7 and 8. There are three noteworthy aspects arising from
this data:

(1) The differences in the generation time.
The generation of a road network using a small patch collection
is faster than using a large one: the larger the collection of

Table 2: Generation data on the road networks in Figures 7
and 8

Tags Number of patches
Excluded Available Unique Used Used Time (s) Figure
None 98 58 381 25 7
Curved 39 29 354 13 8.a
Straight 59 38 335 16 8.b
Loop 75 44 362 21 8.c
Cul-de-sac 84 52 345 22 8.d

patches available, the more patches need to be evaluated during
the selection process.

(2) The amount of unique patches used is significantly lower than
the total amount of available patches.
This can be partly due to ‘special case’ patches, such as terminal
patches, which are avoided in certain situations. In addition,
some patches, e.g. T and × (simple) structures, are more likely
to be chosen than patches with somewhat more complex struc-
tures. Therefore, we provided a convenient way of controlling
the output of a patch-based road network by setting a limit on
the frequency of occurrence of a patch. In this way, limiting
e.g. each patch to occur only once, increases the amount of
unique patches, although typically decreasing the total amount
of patches used.

(3) The total amount of patches used is comparable for all networks.
The second road network (excluding curved patches) uses a
considerably small amount of unique patches, yet it uses a total
amount of patches comparable to the others. We have seen that

(a) Curved patches excluded (b) Straight patches excluded

(c) Loop patches excluded (d) Cul-de-sac patches excluded

Figure 8: Different road networks for the highlighted area
in Figure 7, generated excluding patches with a specific tag.
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in such cases, even though using less unique patches, there are
often a few among them that can fit easily in many situations.

PerformanceThe generation times for the patch-basedmethod are
also dependent on the process of filtering out ‘non-fitting’ patches,
for which we compute a work area, as described in Section 3.3. This
means that, for the same area covered, it takes longer to generate
a road network with a few large cells than a road network with
many smaller cells. As an example, for an area of 4 km2, generating
a patch-based road network with our prototype system takes, on
average, 40 seconds if it is divided into 4 main cells, and 23 seconds,
if it is divided into 16 main cells.

Limitations Presently, there are twomajor limitations in our patch-
based generation approach. First, it is not possible to explicitly place
a given patch at a certain location, nor to assure that a patch is
used at least once. Second, despite the selection methods and rating
mechanisms to find a suitable patch, it still sometimes happens that
quite large and complex local cells are generated.

4.2 Analysis of the parametric generator
One way to measure the power and controllability of procedural
generation methods is to analyze their expressive range. The expres-
sive range of a method indicates the variety of its output content,
obtained by acting on some control mechanism available, e.g. gen-
eration parameters. Similarly to Smith and Whitehead [15], we
analyze the expressive range of our approach by following four
steps: determine the comparison metrics, generate content, visu-
alize the expressive range and analyze the impact of parameters.
For our approach, we soon found out that any attempt at measur-
ing and analyzing the expressive range of the patch-based method
would be first and foremost dependent on the actual database of
patches, more than on any actual controllable settings. Therefore,
we decided to focus the analysis on our parametric generator.

Comparison metrics It is important that the chosen metrics mea-
sure relevant features of road networks. We have chosen street
connectivity and street density, as these two metrics are indepen-
dent, have an intuitive connotation and can be precisely defined.
For example, a road network with high connectivity means that it
is typically ‘straightforward’ to go from A to B, while a dense road
network means that it contains a high amount of streets within an
area. The street density of a road network, which can be visually
perceived on a map, is defined as the total street length (in km)
per area unit (in km2). As for the connectivity, we looked into the
various street connectivity metrics described by Dill [3]. For our
study, we chose the Connected Node Ratio (CNR) as our metric, be-
cause it is based on the notion of dead-ends, which have an intuitive
connotation, and it has a low computational cost:

CNR =
#intersections

#intersections + #deadends
(2)

A high CNR value indicates a relatively low amount of dead-ends
compared to the amount of intersections and, thus, a higher level
of connectivity.

Content generation Our parametric generator provides numer-
ous parameters to control the output road network; see Figure 3 for

the most important. For this analysis, we have chosen to generate
road networks by varying the minimum street angle and the vertex
degree range because these two parameters have a strong impact
on the output. We vary the minimum street angle from 50◦ to 90◦
with increments of 10◦ (an angle lower than 50◦ would be too acute,
and higher than 90◦, too restrictive). For the vertex degree range,
we start at a [2-3] range, a go up to a [4-5] range. For the whole
analysis, all other generator parameters were kept fixed with the
following values: street length (50m), street length deviation range
(10m), minimum street length (20m), street angle deviation range
(10%) and snap radius (20m).

Output visualization Figure 9 depicts the expressive range data
collected, using hexagonal bin plots. For each of the plots, we gener-
ated 1000 road networks covering an area of 1 km2. Each hexagonal
bin indicates the amount of networks with fairly similar connectiv-
ity and density scores. Due to space limitations, we left out the plots
for some intermediate degree ranges; their results are consistent
with these, and can be found elsewhere [17].

Impact of generation parameters From the analysis of the ex-
pressive range data in Figure 9, we can make a number of obser-
vations about the impact of the parameters used on the generated
road networks:

Focusing on each column, thus with a fixed minimum street
angle, we notice that:
• The higher the vertex degree range, usually the denser the graph,

while the connectivity stays relatively steady.
• There is a drop of density from vertex degree range [2-5] to [3-3].

The reason for this is that the range [2-5] allows up to 5 edge
connections for each vertex, and the range [3-3], only up to 3;
as a result, in general, more edges can be generated using the
former.

• The last column (for a minimum street angle of 90°) shows a
rather steady density, in contrast to the other four columns. The
reason is that this minimum street angle in practice restricts the
maximum degree of a vertex to 4, occurring only when the angle
between two edges is exactly 90°(which does not happen very
often). This is not the case for the other columns: with lower
minimum street angles, there is more flexibility, and thus a wider
margin for street density variations.

Focusing on each row, thus with a fixed vertex degree range, we
notice that:
• The higher the minimum street angle, the lower the connectivity

of the graph and usually also the lower the density.
• The first row has relatively steady (low) density scores, as the

connectivity scores decrease. The reason for this is that, due to
the already low vertex degree range [2-3], these road networks
are already quite sparse, so that a higher minimum street angle
only causes less snapping, and hence more dead-ends.

From the observations above, we can conclude that the minimum
street angle and vertex degree range have indeed a considerable
impact on both street connectivity and street density. Evenmore, we
can actually determine which approximate value ranges these two
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Figure 9: Expressive range of the parametric generator, varying the vertex degree range (vertically) and the minimum street
angle (horizontally). For each plot, the connectivity (y-axis) is measured by the Connected Node Ratio, see Equation (2), and
the density (x-axis) is the total street length per km2. Plots on the same row share the vertex degree range, but use increasing
minimum street angles, while plots on the same column share the minimum street angle, but use different vertex degree
ranges. All generated road networks have a connectivity ranging between 0.6 and 1, and a density ranging between 15 and 55.

parameters require, in order to generate road networks with specific
connectivity and density. A road network with high connectivity
and density can be achieved by specifying a high vertex degree
range and a low minimum street angle; a road network with high
connectivity and low density can be generated using a low vertex
degree range and a low minimum street angle; finally, defining
a low vertex degree range and a high minimum street angle will
create a road network with low connectivity and low density.

As can be seen from the above analysis, as well as from the
combined plot of Figure 10, altogether the output of the generator,
obtained by varying only the minimum street angle and vertex

degree range, covers a very large area of the space defined by the
two metrics. However, one can notice that the bottom right area is
missing. Network graphs falling in that area have a low connectivity
and a high density. In terms of road networks, having a relatively
high number of dead-ends and a high street density seems quite non
plausible, as it would mean having e.g. many unconnected streets
twisted very close to each other. We managed to generate such
networks by forcing unlikely low snap radius and high minimum
street length, but the output is always a rather improbable and
non-realistic road network. In other words, the ‘reluctance’ of the
generator to create such networks is an intended consequence of the
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Figure 10: The combined bin plot for all data used in the ex-
pressive range study of Figure 9.

design goal of promoting the generation of plausible road networks
only.

In conclusion, based on these two metrics, we can say that the
expressive range of our parametric road network generator is quite
large, and that the features of its output can be easily controlled by
parameters such as minimum street angle and vertex degree range.

5 CONCLUSION
We presented a novel semantic approach to generate fictive road
networks with plausible complex structures, which combines the
advantages of a patch-based method with those of a parametric
method. For our patch-based method, the semantics of each indi-
vidual patch is represented and stored in a patch database. The
process of first trying to propagate the road network by appending
patches using the patch-based method, and employing a parametric
method as a fall-back mechanism when no suitable patch can be
found, combines both methods into an integrated solution.

Our patch-based generation is controllable by selecting the de-
sired patch semantics, e.g. by excluding one or multiple patch tags,
and also by limiting the number of occurrences a patch can be used.
Our parametric generator is configurable using various parameters,
which allow for the generation of a large variety of road network
styles. The generator has been shown to have a wide expressive
range. In order to facilitate its use by non-experts, one can define
any number of presets that can be used to easily generate different
types of road networks. From our tests, we have confirmed that
users without any technical knowledge of procedural techniques
were able to create very specific road networks on demand [17].

The first direct application for our approach was to assist neu-
ropsychologists with the creation of virtual urban environments
with customized walking paths. With these, they can better diag-
nose patients with a variety of orientation disorders by exposing
them to fully configurable and safe virtual environments created
in-house to fit their unique situation.We envision numerous applica-
tions, especially aimed at enabling non-technical users to generate

customized urban road networks that fulfill very specific require-
ments and preferences, possibly induced by their unique target
user(s). Examples of these are driving simulators, courier delivery
training systems, urban adventure games, etc.

There are a few promising directions for future work. First, in
addition to using patch patterns for initializing a main cell, it would
be interesting to explore how they could also be used during the
propagation process. Second, the breadth-first method currently
only seeks one connectable vertex when searching for a suitable
patch. However, because some patches have multiple connectable
vertices, it might beworth exploring how one could seek and select a
patch that connects multiple connectable vertices. Third, our choice
for a planar geometric graph representation is somewhat restrictive
of the output road networks. It would be interesting to explore how
the use of non-planar patches could solve this limitation.
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