
AutoVyaz: Automating the Formation of Slavic Calligraphy
Ligatures
Alexey Tikhonov
altsoph@gmail.com

Inworld.AI
Berlin, Germany

Figure 1: Procedural Vyaz generation

ABSTRACT
This paper introduces a procedural technique for the automated
generation of Slavic Vyaz, a traditional Cyrillic calligraphy style
known for its ornamental complexity and cultural significance. By
developing a specialized description of font geometry that includes
anchor points and edges to define character shapes, our approach
facilitates the creation of ligatures and character deformations that
maintain the aesthetic and rhythmic qualities of Vyaz. We propose
several heuristics for arranging text layouts that enable the genera-
tion of calligraphic patterns, which can be customized and adapted
to various design needs. Our technique’s capability to simulate tra-
ditional calligraphy is demonstrated through comparative analyses
and examples of preliminary results.

CCS CONCEPTS
• Applied computing→ Fine arts; • Computing methodolo-
gies → Graphics systems and interfaces.

KEYWORDS
Slavic Calligraphy, Vyaz, automated calligraphy generation, digi-
tal typography, cultural heritage preservation, procedural content
generation.

ACM Reference Format:
Alexey Tikhonov. 2024. AutoVyaz: Automating the Formation of Slavic
Calligraphy Ligatures. In Proceedings of the 19th International Conference on
the Foundations of Digital Games (FDG 2024), May 21–24, 2024, Worcester, MA,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
FDG 2024, May 21–24, 2024, Worcester, MA, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0955-5/24/05
https://doi.org/10.1145/3649921.3659845

Figure 2: Cyrillic calligraphy sample, via Wikimedia Com-
mons. (https://w.wiki/9RYy).

USA. ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/3649921.
3659845

1 INTRODUCTION
Vyaz1 (from Slavic ’to bind, to tie’), an ancient Cyrillic calligraphy
style known for its decorative features, started in the 13th century
within South Slavic monuments. By the 15th century, it spread to
East Slavic and Wallachian regions, becoming a significant part
of Slavic cultural heritage. This style experienced its golden age
under Ivan the Terrible but eventually fell into disuse. Examples

1https://w.wiki/9Rdc

https://doi.org/10.1145/3649921.3659845
https://w.wiki/9RYy
https://doi.org/10.1145/3649921.3659845
https://doi.org/10.1145/3649921.3659845
https://w.wiki/9Rdc
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3649921.3659845&domain=pdf&date_stamp=2024-07-05

FDG 2024, May 21–24, 2024, Worcester, MA, USA Tikhonov

of this calligraphy can be seen in Figure 2. Despite sharing com-
mon features with other calligraphic families like Chinese [15, 17],
Japanese [14], and various forms of Arabic calligraphy [4], Vyaz
is distinctively different. Studies indicate that the graphical struc-
tures of calligraphic writing and the semantic structures of the text
interact strongly, affecting the viewer’s perception and providing
an additional communication channel [1].

Slavic Vyaz is known for its variations—simple, complex, and
patterned—which show the style’s versatility and the creative tech-
niques used, including ligature, diminution of letters, and placing
smaller letters within larger ones. Ligatures, merging two or more
characters into one, along with other local deformations, offer a
distinctive way to create calligraphy [14]. However, these defor-
mations are context-dependent and cannot always be explicitly
described. Instead, end-to-end models [8, 9, 16, 18] or procedural
methods [14] are often used for generating combinations.

As an advantage, procedural methods offer complete control over
the process by parameterizing the interactions between elements.
An example is the METAFONT language by Donald Knuth, which
allows for the description of individual character outlines and lig-
ature principles [7]. A common drawback of procedural methods
is their predictability and monotony, which can be mitigated by
character randomization2, introducing variations naturally found
in handwritten text to enhance uniqueness and reduce artificiality.

In contrast, end-to-end methods are convenient in their abil-
ity to replicate the original author’s style provided with enough
number of samples [10] without any additional specification. They
can also use font distortions to convey emotions related to the
text’s emotional tone [2]. Nonetheless, end-to-end methods may
lack controllability and interpretability in their results. Combined
approaches also have gained popularity lately, offering the genera-
tion of content using machine learning models trained on existing
content [11].

This paper presents a procedural technique for generating Slavic
Vyaz, combining parameterized character descriptions with various
ligature formation strategies, including randomized approaches. In-
spired by Vyaz’s ornamental style and complex letter intertwining,
this project aims to digitally replicate these patterns, preserving
and revitalizing interest in this unique cultural heritage for contem-
porary exploration and appreciation. We have made the code3 for
generating Vyaz, as well as the geometric descriptions used for both
Latin and Cyrillic fonts, publicly available. As work in progress, the
proposed technique is not yet thoroughly validated or evaluated;
so we provide a set of illustrative examples that demonstrates the
approach.

2 APPROACH
This article proposes an approach to the automated generation
of patterns characteristic of Slavic Vyaz, including ligatures that
preserve the rhythm of vertical strokes in character writing, as well
as the deformation of individual characters and their integration
into the spaces of larger ones.

The authors propose aDomain-Specific Language (DSL) to enrich
the procedural generation of Slavic Vyaz. Similar to how DSLs have

2www.calligraphr.com/en/docs/faq/#faq-random
3https://github.com/altsoph/asciivyaz

been effectively utilized in automated game design and procedural
content generation (PCG) [13], this DSL is crafted to express the
intricate patterns of Slavic calligraphy, focusing specifically on the
formation of ligatures. The DSL for Character Descriptions enables
detailed specification of how characters are deformed and inter-
twined, resembling systems such as L-Systems[12], Ludoscope[5],
and Wave Function Collapse[6]. These systems are renowned for
their use of patterns and tile replacement techniques, employing
rewrite rules that allow the transformation of basic elements into
complex patterns dynamically.

This DSL approach enhances our method by allowing the explicit
definition of calligraphic rules, which are crucial for replicating
the traditional aspects of Vyaz. By specifying rules that dictate
how characters merge and interact, the DSL not only preserves the
stylistic nuances of Vyaz but also facilitates the generation of new
variations that maintain the essence of this ancient art form.

2.1 Character Description
The geometry of each character is described by the following for-
malism. The description consists of a list of anchors and a list of
edges connecting them. Each anchor has a name and coordinates,
using the vertical number (verticals are numbered with integers
starting from 0) as the horizontal coordinate and a vertical position
label (one of top, upper, middle, down, bottom). Edges are described
by the names of two connected anchors, and a label for their mutual
alignment, taking one of the following values: "<", "<=", "=", ">=",
">", determining the permissible vertical positioning of connected
anchors.

For example, the character shown in Figure 3 consists of 11
anchors and 10 edges, described as follows:

anchors:
− l b : [0 , b]
− l d : [0 , d]
− l u : [0 , u]
− l t : [0 , t]
− mb : [1 , b]
− mm: [1 , m]
− mt : [1 , t]
− rb : [2 , b]
− rd : [2 , d]
− ru : [2 , u]
− r t : [2 , t]

edges:

− [lb , ld , ' < ']
− [lu , l t , ' < ']
− [rb , rd , ' < ']
− [ru , r t , ' < ']
− [mb , mm, ' < ']
− [mm, mt , ' < ']
− [lu , mm, ' > ']
− [ld , mm, ' < ']
− [ru , mm, ' > ']
− [rd , mm, ' < ']

2.2 Formation of Joints and Ligatures
To form joints and ligatures, we propose several heuristics that
create a vector layout of the text, taking into account the geometry
of characters and the general rules of articulation in Slavic Vyaz:

• The simplest method, ’plain’, does not form joints but simply
places characters on sequential verticals, one after another.

• Other methods attempt to form joints using the following
meta-rules, where symbols can be combined if they can be
shifted without overlap:
– Without distorting the characters themselves (see Figure
4a).

www.calligraphr.com/en/docs/faq/##faq-random
https://github.com/altsoph/asciivyaz

AutoVyaz: Automating the Formation of Slavic Calligraphy Ligatures FDG 2024, May 21–24, 2024, Worcester, MA, USA

Figure 3: Character grid definition

Figure 4: Formation of Joints

– By changing the vertical scale of one of the characters
(see Figure 4b), where the permissible scale range is a font
parameter.

– By shifting one or more of their anchors, while keeping the
inequalities defined on edges valid (see Figure 4c), where
the permissible distortion range is a font parameter.

These rules set constraints within which the algorithm seeks
an optimal layout – minimizing both the final width of the text
and the average distortion of characters. Given the potentially vast
search space, we propose the use of several heuristics – greedy
optimization, where we sequentially add one character and try
to compress the current text, and random search methods in the
parameter space.

The parameters being explored in the random search include the
vertical positioning (high and low points) and distortion factors for
each character. The algorithm attempts to find a combination that
allows characters to be placed next to each other without overlap
while minimizing vertical distortion and maintaining the aesthetic
integrity of the text.

The utility function evaluates each configuration by considering
the width (how much horizontal space the text occupies) and the
distortion (how much the characters deviate from their original
form); aggregation of distortion factors for individual characters is
done by multiplication of their factors to get a combined measure

Figure 5: Greedy vs random seach.

of how much the overall text layout deviates from the ideal or
original forms due to necessary adjustments. The score is based
on a combination of these factors, often prioritizing configurations
that achieve a compact layout with minimal character distortion.

In the greedy approach, the text compression technique chosen
involves sequentially adding characters to the layout and trying
to compress the existing text to fit the new character as close as
possible. This method iteratively adjusts the positions of characters
to reduce the overall width of the text block. Each new character
is added based on its potential to fit into the current layout with
minimal overlap and distortion, adjusting the position of previous
characters as necessary to make space.

Figure 5 shows how random search sometimes gives aesthetically
better results.

2.3 Font Description
The global font configuration thus consists of:

• Descriptions of individual characters.
• Global geometry parameters, including height (the pixel dis-
tance between top and bottom labels), the distance between
verticals, and the desired (but not guaranteed) positioning
of vertical anchor labels.

• Ligature formation algorithm settings – permissible distor-
tions, the number of random search iterations, etc.

2.4 Rasterization
We used Bresenham’s line algorithm [3] to convert the final vector
layout of the inscription into a raster. The rasterization parameters
are also algorithm parameters, but by default, we produce the result
in the form of Unicode art, similar to utilities like figlet, cowsay,
etc., allowing the result to be decorated with utilities like lolcat.

3 DISCUSSION
In this paper, we presented a procedural method for generating
Slavic Vyaz, focusing on the creation of ligatures and the integra-
tion of character deformations to preserve the unique rhythm and
vertical stroke dynamics characteristic of this calligraphy style. Our
approach leverages a detailed font description, incorporating an-
chor points and edges to define the geometry of each character,
thus enabling a flexible yet controlled way of forming connections
and ligatures.

The implementation of various heuristics for text layout, ranging
from simple sequential character placement to more complex strate-
gies involving character scaling and anchor adjustments, demon-
strates the potential of our method to generate calligraphy that

FDG 2024, May 21–24, 2024, Worcester, MA, USA Tikhonov

Figure 6: (a) the art work of Anna Shishlyakova;
(b) the result of a random search for optimal layout.

respects traditional Slavic Vyaz patterns while allowing for creative
variations.

The proposed technique is still under development and hasn’t
been thoroughly validated or evaluated yet. To illustrate ourmethod,
we refer to Figure 6. The top part, Figure 6a, showcases Anna
Shishlyakova’s work, while the bottom part, Figure 6b, shows an
example from a random search for optimal layout. Both examples
use similar joint strategies, but our goal with automated calligraphy
isn’t to replace human creativity. Instead, we want to enhance it
by making traditional art forms more accessible and encouraging
artistic experimentation. Figure 7 shows more examples of Vyaz
texts generated by our tool.

Looking ahead, we plan to improve our algorithm to better mimic
the detailed variations of hand-written calligraphy and to expand
it to include Arabic and Western scripts. This will help us cater to
a wider range of artistic styles. We also aim to make our tool easier
for those without a background in digital typography or program-
ming to use. Furthermore, we hope to work with contemporary
artists to see how our tool can contribute to modern art projects,
combining traditional calligraphy with new media to showcase
Vyaz’s adaptability in modern art.

ACKNOWLEDGMENTS
This project owes an inspiration to the calligraphy work of Anna
Shishlyakova, that sparked the initial curiosity and subsequent
exploration into the automation of Slavic Vyaz ligatures.

REFERENCES
[1] Kaddour Abdallah-Tani and Abdallah K. 2022. Visual semiotics in the structure

of Kufic calligraphy. International Journal of Visual and Performing Arts Vol 3 (02
2022), 110–116. https://doi.org/10.31763/viperarts.v3i2.516

[2] Yana Agafonova, Alexey Tikhonov, and Ivan P. Yamshchikov. 2020. Paranoid
Transformer: Reading Narrative of Madness as Computational Approach to
Creativity. Future Internet 12, 11 (2020). https://doi.org/10.3390/fi12110182

[3] J. E. Bresenham. 1965. Algorithm for computer control of a digital plotter. IBM
Systems Journal 4, 1 (1965), 25–30. https://doi.org/10.1147/sj.41.0025

[4] Zineb Kaoudja, Mohammed Lamine Kherfi, and Belal Khaldi. 2021. A New Com-
putational Method for Arabic Calligraphy Style Representation and Classification.

Figure 7: A few more examples of generated Vyaz.

Applied Sciences 11, 11 (2021). https://doi.org/10.3390/app11114852
[5] Daniel Karavolos, Anders J. Bouwer, and Rafael Bidarra. 2015. Mixed-Initiative De-

sign of Game Levels: IntegratingMission and Space into Level Generation. In Inter-
national Conference on Foundations of Digital Games. https://api.semanticscholar.
org/CorpusID:7864753

[6] Isaac Karth and Adam M. Smith. 2017. WaveFunctionCollapse is constraint
solving in the wild. In Proceedings of the 12th International Conference on the
Foundations of Digital Games (Hyannis, Massachusetts) (FDG ’17). Association
for Computing Machinery, New York, NY, USA, Article 68, 10 pages. https:
//doi.org/10.1145/3102071.3110566

[7] Donald E. Knuth. 1989. The Metafont book. Addison-Wesley Longman Publishing
Co., Inc., USA.

[8] Qisheng Liao, Zhinuo Wang, Muhammad Abdul-Mageed, and Gus Xia.
2023. CalliPaint: Chinese Calligraphy Inpainting with Diffusion Model.
arXiv:2312.01536 [cs.CV]

[9] Gan Lin, Zhihua Guo, Fei Chao, Longzhi Yang, Xiang Chang, Chih-Min Lin,
Changle Zhou, V. Vijayakumar, and Changjing Shang. 2021. Automatic stroke
generation for style-oriented robotic Chinese calligraphy. Future Generation
Computer Systems 119 (2021), 20–30. https://doi.org/10.1016/j.future.2021.01.029

[10] Vittorio Pippi, Silvia Cascianelli, and Rita Cucchiara. 2023. Handwritten Text
Generation from Visual Archetypes. arXiv:2303.15269 [cs.CV]

[11] Adam Summerville, Sam Snodgrass, Matthew Guzdial, Christoffer Holmgård,
Amy K. Hoover, Aaron Isaksen, Andy Nealen, and Julian Togelius.
2018. Procedural Content Generation via Machine Learning (PCGML).
arXiv:1702.00539 [cs.AI]

[12] Julian Togelius, Noor Shaker, and Joris Dormans. 2016. Grammars and L-systems
with applications to vegetation and levels. 73–98. https://doi.org/10.1007/978-3-
319-42716-4_5

[13] Riemer van Rozen. 2021. Languages of Games and Play: A Systematic Mapping
Study. ACM Comput. Surv. 53, 6, Article 123 (dec 2021), 37 pages. https://doi.
org/10.1145/3412843

[14] Lisong Wang, Tsuyoshi Nakamura, Minkai Wang, Hirohisa Seki, and Hidenori
Itoh. 1997. A method of generating calligraphy of Japanese character using
deformable contours. In Proceedings of the Fifteenth International Joint Conference
on Artifical Intelligence - Volume 2 (Nagoya, Japan) (IJCAI’97). Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1050–1055.

[15] Yuanbo Wen and Juan Alberto Sigüenza. 2020. Chinese Calligraphy: Character
Style Recognition based on Full-page Document. In Proceedings of the 2019 8th
International Conference on Computing and Pattern Recognition (Beijing, China)
(ICCPR ’19). Association for Computing Machinery, New York, NY, USA, 390–394.
https://doi.org/10.1145/3373509.3373512

[16] Ruiqi Wu, Changle Zhou, Fei Chao, Longzhi Yang, Chih-Min Lin, and Changjing
Shang. 2020. GANCCRobot: Generative adversarial nets based chinese calligraphy
robot. Information Sciences 516 (2020), 474–490. https://doi.org/10.1016/j.ins.
2019.12.079

[17] Songhua Xu, F.C.M. Lau, W.K. Cheung, and Yunhe Pan. 2005. Automatic genera-
tion of artistic chinese calligraphy. IEEE Intelligent Systems 20, 3 (2005), 32–39.
https://doi.org/10.1109/MIS.2005.41

[18] Peichi Zhou, Zipeng Zhao, Kang Zhang, Chen Li, and Changbo Wang. 2021.
An end-to-end model for chinese calligraphy generation. Multimedia Tools and
Applications 80, 5 (01 Feb 2021), 6737–6754. https://doi.org/10.1007/s11042-020-
09709-5

https://doi.org/10.31763/viperarts.v3i2.516
https://doi.org/10.3390/fi12110182
https://doi.org/10.1147/sj.41.0025
https://doi.org/10.3390/app11114852
https://api.semanticscholar.org/CorpusID:7864753
https://api.semanticscholar.org/CorpusID:7864753
https://doi.org/10.1145/3102071.3110566
https://doi.org/10.1145/3102071.3110566
https://arxiv.org/abs/2312.01536
https://doi.org/10.1016/j.future.2021.01.029
https://arxiv.org/abs/2303.15269
https://arxiv.org/abs/1702.00539
https://doi.org/10.1007/978-3-319-42716-4_5
https://doi.org/10.1007/978-3-319-42716-4_5
https://doi.org/10.1145/3412843
https://doi.org/10.1145/3412843
https://doi.org/10.1145/3373509.3373512
https://doi.org/10.1016/j.ins.2019.12.079
https://doi.org/10.1016/j.ins.2019.12.079
https://doi.org/10.1109/MIS.2005.41
https://doi.org/10.1007/s11042-020-09709-5
https://doi.org/10.1007/s11042-020-09709-5

	Abstract
	1 Introduction
	2 Approach
	2.1 Character Description
	2.2 Formation of Joints and Ligatures
	2.3 Font Description
	2.4 Rasterization

	3 Discussion
	Acknowledgments
	References

