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ABSTRACT
Large Language Models (LLMs) are powerful tools, capable of lever-
aging their training on natural language to write stories, generate
code, and answer questions. But can they generate functional video
game levels? Game levels, with their complex functional constraints
and spatial relationships in more than one dimension, are very dif-
ferent from the kinds of data an LLM typically sees during training.
Datasets of game levels are also hard to come by, potentially taxing
the abilities of these data-hungry models. We investigate the use of
LLMs to generate levels for the game Sokoban, finding that LLMs
are indeed capable of doing so, and that their performance scales
dramatically with dataset size. We also perform preliminary experi-
ments on controlling LLM level generators and discuss promising
areas for future work.
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1 INTRODUCTION
In recent years, attention-based large language models (LLMs) have
taken the world by storm, demonstrating surprisingly high perfor-
mance on a variety of natural language tasks. With the right tuning,
LLMs have been shown to generate coherent text in a number of
styles, produce working snippets of computer code, and even re-
spond naturalistically to human questions and conversation. While
the architectures underlying these models have been leveraged for
tasks outside the realm of standard text generation, from music [6]
to reinforcement learning [3], comparatively less effort has been
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Figure 1: A level for the puzzle game Sokoban generated by
GPT-3

spent on analyzing the capacity of the LLMs themselves to produce
non-lingusitic artifacts while still leveraging their vast amounts of
training data. In this paper, we investigate the ability of LLMs to
generate video game levels and the extent to which truths about
these models taken from natural language processing apply to this
new domain. We also conduct preliminary experiments on the ca-
pacity to control the levels generated by LLMs using simple data
augmentation and prompting.

Despite their impressive performance, there are reasons to doubt
that LLMs would be well suited to the task of level generation. The
first is representational. For context, the last few years have seen a
steady increase in the use of machine learning to generate novel
game content, including game levels. This procedural content gener-
ation through machine learning (PCGML) has made use of a variety
of methods, including cellular automata, Markov models, convolu-
tional neural networks, and generative adversarial networks. While
dissimilar in function, these methods are nonetheless unified in
that they tend to represent game levels spatially, as arrangements
of tiles or features in two or three dimensions. This is an intuitive
approach, as it allows models to more readily learn the local spatial
dynamics present in game environments. By contrast, LLMs process
inputs and generate outputs in a linear fashion. Game levels must
be presented as a sequence of tokens in order to be fed into the
model, and generated outputs must be reinterpreted as spatial data
in order to be used. Further, variable-length tokenization schemes
used by modern LLMs mean that two levels of the same size might
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be represented with different amounts of underlying tokens. Main-
taining regularity and spatial relationships (e.g. attempting to place
an enemy directly beneath a player in two dimensions) therefore
requires more than simply counting the number of tokens. Nev-
ertheless, prior work on n-grams and recurrent neural networks
has demonstrated that game levels can be represented sequentially
without the loss of critical spacial dependencies, albeit with some
difficulty. We investigate the extent to which this holds for modern,
attention-based models and their typical tokenization schemes.

The second potential issue with using LLMs to generate game
levels is that of data. LLMs are notoriously data hungry, while
datasets of game levels are notoriously small, difficult to obtain, and
lacking in standardization. The first obvious question is whether
the ability of an LLM to generate levels depends on its receiving
vast amounts of high-quality training data. More subtly, it is also
important to determine whether the vast amount of data used
in pretraining actually assists the LLM in producing game levels.
It is not clear whether the patterns and structures learned from
exposure natural language (or, in some cases, code) transfer to the
functional and spatial constraints of game levels. The quality and
even playability of a game level is often dependent on factors such
as topology or the relative amounts of different tile types – a far
cry from the syntax of English or Python!

Even so, LLMs also seem to have certain advantages when it
comes to level generation, namely controllability and generalizabil-
ity. Controllability here refers to the possibility of using natural
language prompts to generate levels with particular characteristics.
Recent work has demonstrated that natural language-guided gen-
eration is possible not only for text, but also for images [18] and
music [1]. These systems leverage LLMs and are capable of accom-
modating a wide range of potential prompts, an impressive feat
that provides some reason for optimism that current approaches
for controllable level generation could be similarly improved. At
the same time, LLMs have shown considerable promise in gener-
alizing to unseen domains [2] or across a wide variety of tasks
[19]. With respect to level generation, this might allow for a single
LLM-based model to produce levels for multiple games or even,
with sufficiently detailed prompting, a previously unencountered
game.

In this paper, we aim to answer some of the initial questions
surrounding the ability of LLMs to generate game levels using the
iconic puzzle game Sokoban. We perform experiments on the effects
of pretraining and dataset size, as well as a preliminary investigation
on the controllability of LLM level generators. We conclude with a
discussion of the results and the many fruitful avenues for future
work.

2 RELATEDWORK
Procedural content generation (PCG), refers to the use of automated
or algorithmic methods to create artifacts, typically for use in art
or games. Techniques for PCG range from simple noise functions
to complex neural models. Our work falls into the broad category
of procedural content generation via machine learning (PCGML)
[29], in which content generating functions are learned from extant
datasets. Liu et al. present an overview of the PCGML field, with a
specific focus on deep learning [12].

(a) Playable level generated by
GPT-2

(b) Nearest level (edit distance)
in the Boxoban set

Figure 2: A novel and playable generated level, and its nearest
neighbor in the training set.

For the specific task of generating game levels, common model
choices include variational autoencoders [24], generative adversar-
ial networks [16, 31], evolution [23], and reinforcement learning
[10]. In addition, however, there is a history of using autoregressive
models typically found in natural language processing for game
level generation. Dahlskog et al. present early work on this ap-
proach, using a simple n-gram approach to generate novel Super
Mario Bros. levels from an existing dataset by treating a level as a
left-to-right sequence of “tokens” each representing a vertical slice
[4]. This work was quickly expanded to use long short-term mem-
ory (LSTM) networks [28], a model choice which has also found
success in generating levels based on human play traces [27] and
combining levels from multiple games [20].

Our work also borrows from the literature on controllable PCG,
in which specific parameters are provided to the generator in or-
der to guide its outputs. Approaches for controllable PCG often
involve manipulating a latent embedding vector, with prior work
having made use of generative networks [14], VAEs [21, 22], and
reinforcement learning [5].

Our target domain of Sokoban is a popular choice for PCG work,
ranging from early rule- and template-based approaches [15, 30],
to search-based methods [8] and recurrent neural networks [26].
Zakaria et al. present a particularly in-depth comparison of various
PCG methods for Sokoban, including LSTMs [33]. They bootstrap
an initially-small dataset of levels and use it to train their level
generators, demonstrating that LSTMs are capable of producing a
variety of novel and playable levels. They also perform experiments
on the controllability of their generators. Their results indicate
that while the task is challenging, LSTMs, in addition to other
existing PCGML methods, can adhere to specified characteristics
at levels substantially above chance. Our analysis is similar, though
we instead focus our attention on a more modern class of large
language model. In addition to a change in architecture, we also
specifically interrogate some of the standard assumptions about
the training and behavior of LLMs, and whether or not they are
helpful for the task of level generation.

Finally, contemporaneous work makes use of a transformer-
based language model to controllably generate levels for Super
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Mario Bros [25]. This investigation is complementary to ours, and
focuses on a different target domain.

3 DATA
We train our models on levels from the game Sokoban, a block-
pushing puzzle game released in 1982 by Thinking Rabbit. In Sokoban,
the player is tasked with navigating along a rectangular grid in
order to push boxes into specified target squares. A level can easily
be represented as a grid of ASCII characters, where each character
is mapped to either: a wall, an empty space, the player, a box, a
goal, a box on top of a goal, or a player on top of a goal. Despite
its simplicity of representation, Sokoban levels can be very chal-
lenging for both human and artificial agents alike, owing to its
rapidly-branching state space and the fact that certain game states
are “unrecoverable” and, once reached, cannot be escaped from.

We use two sets of Sokoban levels to train our models. The first is
the Microban1 dataset, consisting of roughly 500 levels created by
David W. Skinner. We restrict our dataset to 282 levels for which an
ASTAR search agent was able to find a solution. Levels in this set
range in size from 5 by 3 to 27 by 12, with solution lengths ranging
from 1 to 279.

The second set of Sokoban levels is the Boxoban dataset, which
consists of 438,000 procedurally generated levels. Levels were gen-
erated using a combination of heuristic and pattern-based rules
[32]. Unlike with the Microban set, levels in the Boxoban set are all
10 by 10 and contain 4 boxes / goals. We use the ASTAR agent to
recover solutions for all 438,000 levels, and solution lengths range
from 6 to 206.

To construct our dataset, we split each level into a set of lines
(applying a padding of walls in the case of non-rectangular levels),
concatenate them to form a single string of characters, and finally
apply the model’s tokenizer.

4 MODELS
Our core experimental model is the Generative Pre-Trained Trans-
former (GPT), a class of attention-based language model [2, 17].
Both GPT-2 and GPT-3 are trained by attempting to predict the
next “token” (typically a word or word piece) given the context of
preceding tokens. Owing to its greater availability, we focus the
majority of our experiments on GPT-2 and variants thereof.

5 METRICS
To measure the ability of LLMs to generate game levels, we use the
following four metrics:

• Playability: we measure the proportion of generated game
levels that are “valid”. In the case of Sokoban, this means that
they are rectangular, contain only valid characters, contain
an equal and non-zero number of boxes and goals, contain
exactly one player, and are solvable. We determine solvabil-
ity using an ASTAR tree-search agent. If, after running for
150,000 steps, the ASTAR agent fails to find a valid solution,
we deem the level unplayable. This provides a lower bound
on the true rate of playability.

1Microban dataset available here: https://tinyurl.com/yckwxd7k

• Novelty: we measure the proportion of generated game levels
that are distinct from each level in the training dataset. We
use a simplified approach that treats two levels as distinct if
their string edit distance is above some threshold. We note,
however, that this definition of novelty does not take into
account functional differences between levels (e.g. two levels
may differ in only a single tile but nonetheless have very
different solutions). Exploring the effects of different novelty
measures remains an interesting area for future work. For
our experiments, we use a the edit-distance approach and a
threshold of 𝑘 = 5.

• Diversity: we measure the proportion of generated game lev-
els that are mutually distinct from each other. Using the same
definition of distinctness as above, we use a graph-based ap-
proach to find the largest subset of generated levels that are
all at least 𝑘 = 5 edit distance from each other. Specifically,
we convert the set of generated levels into an undirected
graph where two nodes (levels) have an edge if their edit
distance is above the threshold 𝑘 . We then find the largest
clique (subset of fully connected nodes) on this graph, and
report the diversity as the size of this clique divided by the
number of generated levels (a set of levels on this graph is
only fully connected if each level is at least 𝑘 edit distance
away from every other level in the set). Because finding a
maximum clique can be computationally intractable, we ter-
minate the clique-finding algorithm after a specified number
of iterations (1 million) and report the size of the largest
clique found. This provides a lower bound on the model’s
diversity.

• Accuracy: in the case of controllability experiments, we mea-
sure the proportion of generated game levels that adhere
to the given prompt. Rather than enforce an exact match
between prompt and output, we allow the model to generate
levels that are within a certain experiment-specific tolerance
of the specified characteristic (for instance, with a tolerance
of 5 wewould consider accurate a level with a solution length
of 21, when the prompt called for a level with solution length
25)

6 EXPERIMENTS
6.1 Effects of Pretraining
Our first experiment aims to answer two questions:

(1) Are LLMs capable of generating novel, playable game levels?
(2) Does the extensive pretraining given to LLMs affect their

ability to generate game levels?
LLMs are typically trained on vast quantities of text collected

from a variety of natural language contexts and then later “fine-
tuned" on a smaller, more task-specific dataset. While pretraining
has been shown to improve models’ performance on a variety of
downstream linguistic tasks, it is less clear whether it would help
in the more specialized task of generating valid game levels. To
examine this question, we consider 3 variants of the GPT-2 model:
standard, java-adapted, and untrained. The standard GPT-2 model
was pretrained on the WebText dataset, consisting of the content of
45 million links [17], the java-adapted model was pretrained on the
CodeSearchNet dataset of Java code, consisting of 1.6 million Java

https://tinyurl.com/yckwxd7k
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methods [13], and the untrained model, unsurprisingly, received
no pretraining (weights are randomly initialized). As a note, both
standard and java-adapted models use specialized tokenizers which
are trained to efficiently break input strings into sub-word tokens.
Rather than use an existing tokenizer, we allowed the untrained
model to train a custom tokenizer on the game level dataset, using
the same byte-pair encoding scheme as GPT-2.

Each model is trained for 100k steps with 5 random seeds on
the Boxoban dataset with the following training hyperparameters:
learning rate of 0.0001, weight decay of 0.0001, a batch size of
32, and the AdamW optimizer.Each model took roughly 24 hours
to train on a single A100 GPU. In order to evaluate a model, we
provide it with some initial context (for this experiment, only the
START token) and then use beam search with random sampling in
order to generate one or more continuations. We then compute
the proportion of generated levels that are novel, the proportion
that are playable, and the proportion that are novel, playable, and
diverse. For simplicity, we call the proportion of novel, playable,
and diverse levels the model’s score (e.g. if the model produces 54
levels that are playable and novel out of 100 samples, of which 47
are mutually distinct, we report a score 0.47).

Because the outputs of a LLM are largely dependent on the hy-
perparameters used during generation, for each model and seed we
perform an additional sweep over the generation temperature, the
top-p value, and the number of beams. Each inference takes only
a few minutes on a single A100 GPU. The entire sweep was com-
pleted in roughly 2 hours. For each model, we select the evaluation
hyperparameters which achieve the highest score when averaged
over the 5 random seeds. We report these average scores, along
with the average novelty, playability, and diversity rates, for each
model in Table 1.

6.2 Effects of Dataset Size
Another well-known property of LLMs is that their performance on
a variety of NLP tasks tends to scalewith the amount of training data
[7], but does this trend hold for the specialized task of generating
game levels? This question is particularly important because in
many situations it is difficult or impossible to collect a large set
of high-quality game levels. Relatedly, in situations where large
amounts of game levels are available (typically games for which
heuristic or rule-based PCG approaches exist), do LLMs benefit from
ever-increasing dataset sizes? Finally, can simple data augmentation
approaches improve LLM performance?

First, we consider four “slices” of the Boxoban dataset consisting
of 0.1%, 1%, 10%, 100% (i.e. the complete dataset used above) of
the data, randomly sampled. We take the standard GPT-2 model
and re-train it on each of the slices for 100k steps, using the same
training hyperparameters as above. We then evaluate each model’s
novelty, playability, and “score” using the same procedure as in
Section 6.1. As before, we find the evaluation hyperparameters that
achieve the highest average score for each model, and report the
results in Table 2.

Next, we train a GPT-2 model on the Microban dataset, as well
as two augmented versions of the dataset: Microbanflip (levels
flipped about the X and Y axes) and Microbanflip+rotate (levels
rotated 90 degrees clockwise and counterclockwise). Each model is

Novelty Playability Diversity Score
Model

GPT-2 0.97 0.54 1.00 0.53
GPT-2 (Untrained) 0.96 0.60 1.00 0.56
Java GPT-2 0.97 0.54 1.00 0.53

Table 1: Novelty, playability, diversity, and overall “score”
(defined as the diversity of the subset of generated levels that
are both novel and playable) for each type of pretraining,
using the best evaluation hyperparameters when averaged
over 5 seeds.

prop_empty: 0.25
solution_len: 65

########
##----##
##.-..##
###$-@-#
#-$--$-#
#---####
########

prop_empty: 0.269
solution_len: 42

#########
#---#####
#---#---#
##-$*@--#
##-*.--##
##--#####
#########

Figure 3: Two levels taken from the Microban dataset, along
with their annotations

trained for 100k steps, and the highest achieved average score for
each is reported in Table 3.

6.3 Controllability
Arguably the most compelling reason to use LLMs for game level
generation is the ability to prompt the model in natural language to
generate levels with specific characteristics. For instance, it might be
possible to create a level that has a specific difficulty (represented by
the length of the solution), or with certain level topologies. Recent
LLMs have demonstrated impressive abilities to leverage prompting
in order generalize from few or even zero examples on a variety of
tasks [2]. However, zero-shot generalization is likely to be difficult
for level generation owing to the many functional constraints on
valid game levels and their dissimilarity from inputs encountered
during pretraining. Thus, we instead focus on LLMs that have been
trained specifically to adhere to prompts during level generation.
We accomplish this by simply prepending an “annotation” to each
level in the training dataset. Two examples of annotated levels are
presented in Figure 3. At generation time, we provide the model
with only the annotation and task it with generating the rest of the
level while adhering to the specified values.

For this experiment, we focus on two annotated characteristics:
the proportion of empty space (i.e. percentage of level tiles that
are not players, walls, boxes, or targets) and the solution length.
Both of these are measurable characteristics of valid Sokoban levels,
though they differ in complexity. The proportion of empty space
is an observable characteristic of a level, requiring only the ability
to count in order to compute. Solution length, by contrast, can
typically only be computed by actually solving the level in question
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Novelty Playability Diversity Score
% of Boxoban

0.1% 0.00 0.80 0.01 0.01
1% 0.10 0.66 0.97 0.03
10% 0.90 0.55 1.00 0.47
100% 0.97 0.54 1.00 0.53

Table 2: Novelty, playability, diveristy, and overall score for
GPT-2 trained on increasing amounts of the Boxoban dataset,
using the best hyperparameters averaged over 5 seeds. In-
creasing dataset size leads to increased performance.

and not through direct observation. Even visually sparse or simple
levels can require long solutions.

As with the dataset size experiment in Section 6.2, we use a
standard pretrained GPT-2 model. We train a separate model on the
Boxoban dataset annotated with the proportion of empty space and
the Boxoban dataset annotated with level solution length. At test
time, we provide the model with only the annotation, randomly
sampled from the collection of annotations in the training set. In ad-
dition to novelty, playability, and diversity, we compute the model’s
accuracy as described in Section 5. For the proportion of empty
space condition, we use a tolerance of 0.01, and for the solution
length condition we use a tolerance of 5. For this experiment, we
report both the standard “score” defined above, as well as the “con-
trol score,” which is simply the diversity of levels that are accurate
to the prompt, in addition to being novel and playable. We report
these results, using the same evaluation procedure as in Section 6.1,
in Table 4.

6.4 Preliminary Investigation on GPT-3
While GPT-2 has demonstrated very high performance on a variety
of natural language tasks, it has nonetheless been largely eclipsed
by its successor: GPT-3, which boasts both substantially more pa-
rameters as well as a greatly increased amount of pretraining data.
Access to GPT-3 is currently limited, making it infeasible to per-
form direct comparisons with GPT-2 on all measures. Nevertheless,
we perform some initial experiments on the performance of Ope-
nAI’s Davinci model when trained on the Microban dataset and its
augmentations.

We train the Davinci model for 10 epochs separately on each
of the datasets using a single seed. At test time, we perform a
limited hyperparameter sweep over generation temperature and
top-p. As with GPT-2, we compute the model’s novelty, playability,
and overall score. We report the GPT-3 results in Table 5.

7 RESULTS
7.1 Effects of Pretraining
We see in Table 1 that all three models are able to generate novel,
playable, and diverse levels. An average “score” of around 0.55 indi-
cates that the language model is able to reliably generate Sokoban
levels that are valid and solvable without directly copying from
its Boxoban training dataset. We observe that the untrained GPT-2

Novelty Playability Diversity Score
Dataset

Microban 0.59 0.30 0.83 0.02
Microbanflip 0.56 0.32 0.89 0.02
Microbanflip+rotate 0.24 0.54 0.82 0.04

Table 3: Novelty, playability, diversity, and overall score for
GPT-2 trained on the Microban dataset and two augmenta-
tions, using the best hyperaparmeters averaged over 5 seeds.
The model broadly overfits and fails to generate novel and
playable levels.

model performs very slightly better than either of the pretrained
models. The difference, however, is minute and likely to the effect
of random variance. Overall, this seems to indicate that the pretrain-
ing afforded to these LLMs neither particularly helps nor hinders
their ability to generate game levels. This could be explained by
the substantial dissimilarity between modeling natural language
and Sokoban levels, meaning that models are required to effectively
learn from scratch in this domain and are able to do so.

7.2 Effects of Dataset Size
The results in Table 2 and Table 3 indicate that dataset size is indeed
an important factor for an LLM’s ability to generate game levels.
For small datasets (i.e. the 0.1% and 1% conditions of Boxoban, as
well as also Microban conditions), GPT-2 can produce levels that
are independently novel or playable in isolation, but not levels
that are both, leading to low overall scores. Nevertheless, in all but
the 0.1% Boxoban condition, sample diversity remains relatively
high. While the effect is not especially pronounced, there does
appear to be a correlation between the size of the dataset and
the model’s score. This supports the notion that, like with many
natural language tasks, LLM performance on level generation scales
effectively with the availability of training data. We note, however,
that prior works demonstrates LSTMs are capable of generating
novel levels when trained on a bootstrapped dataset consisting
originally of only 12 samples [33], meaning that it is unlikely that
LLMs are fully incapable of performing well when restrcted to small
datasets. What might account for this difference in performance,
then?One possibility is expressivity: modern transformers aremuch
better able to represent sequential data than LSTMs, and so are more
likely to completely model the dynamics of their training datasets,
to the detriment of their generative capabilities. However, as we
will see, this explanation does not account for the performance of
GPT-3 (see Section 7.4).

7.3 Controllability
In Table 4, we see effects of sampling levels conditioned on simple
prompts. In the first row, we see that the GPT-2 model is able to
produce levels that are novel, playable, and within a single tile of
the specified proportion of empty space (corresponding to perfect
accuracy and a relatively high control score). However, when it
comes to solution length, GPT-2 achieves an accuracy of only 17%.
Given the tolerance of 5 and the fact that most solution lengths
in the dataset fall within a relatively narrow band, this cannot
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Novelty Playability Accuracy Diversity Score Control Score
Controls

Prop. Empty 0.96 0.57 1.00 0.97 0.53 0.53
Solution Len 0.95 0.54 0.17 1.00 0.50 0.14
Prop. Empty & Solution Len 0.96 0.59 0.03 0.79 0.45 0.03

Table 4: Novelty, playability, diversity, and accuracy (along with the overall score and the “control score”, which accounts
for accuracy) for GPT-2 trained on Boxoban, annotated with the proportion of empty space, the solution length, and both
simultaneously, using the best hyperparameters when averaged over 5 seeds. The model is able to adhere to the empty space
controls, but not the solution length controls.

Novelty Playability Diversity Score
Dataset

Microban 0.09 0.88 0.67 0.01
Microbanflip 0.55 0.94 0.77 0.36
Microbanflip+rotate 0.70 0.93 0.88 0.51

Table 5: Novelty, playability, diversity, and overall score for
GPT-3 trained on the Microban dataset and two augmenta-
tions. GPT-3 is able to produce novel, playable, and diverse
levels from a relatively small training set.

be interpreted as anything more than the effects random chance.
A similar fact holds for the combined condition, where overall
accuracy is determined by both the correct amount of empty space
and solution length and does not rise above 3%. It is worth noting,
however, than even in the conditions where GPT-2 failed to produce
accurate levels, it nonetheless continued to generally produce novel
and playable ones. In other words, the introduction of the prompt
did not negatively affect the model’s performance.

7.4 Preliminary Investigation on GPT-3
Table 5 contains the results of GPT-3 level generation when trained
on the Microban and its augmentations. While these results should
be taken with a healthy amount of caution because they are gener-
ated from only a single training run and with a limited evaluation
hyperparameter sweep, they nonetheless offer some reason for
optimism. In contrast to GPT-2, GPT-3 is able to produce novel
and playable levels when trained on both the augmented forms of
the Microban dataset, with its overall score on the final condition
approaching that of GPT-2 trained on the entire Boxoban dataset.
As with previous experiments, however, we observe that increasing
dataset size (in this case adding rotations in addition to flips) does
lead to increased overall performance with GPT-3. In future work,
we intend to perform a more robust analysis of GPT-3’s abilities,
including its capacity for controllable level generation.

8 FUTUREWORK
In this paper, we examine the performance of LLMs on generating
levels for a single game. However, one of the primary strengths of
LLMs is their ability to rapidly adapt to a variety of contexts given
the appropriate prompt. Consider a dataset of levels from many dif-
ferent games, where each level has been annotated with the natural

language mapping from tiles to game objects (e.g. “@ represents
the player, M represents a monster), along with a description of the
level objective. An LLM might be better equipped than other PCG
systems to generate novel and playable levels from this variety of
games, owing to its familiarity with natural language and capacity
for rapid adaptation.

However, our work also indicates that making effective use of
LLMs for game level generation may require more consideration
of dataset size: few games have available the massive amount of
levels present in the Boxoban set. As mentioned in Section 7.2, prior
work has demonstrated that bootstrapping larger training sets from
initially small collections of levels is a viable technique. Another
possibility is augmenting existing datasets beyond simple flips and
rotations. More generally, we should consider “fundamental tension
of PCGML” [9]: at what point does the cost of obtaining training
data for automated content generators exceed the cost of making
the content by hand? While it’s possible that LLMs require too
much data to be feasible game content generators, the reasonable
performance of GPT-3 on the small Microban dataset offers some
optimism that this tension might be ameliorated by more sophisti-
cated models.

It is also important to note that the large amounts of data used
to pretrain LLMs could potentially include Sokoban levels in vari-
ous formats. This fact complicates the notion of “novelty,” as it’s
possible for the model to produce levels that are distinct from its
fine-tuning dataset but are nonetheless copies of extant game lev-
els. One potential approach for mitigating this danger would be
to separate out the prompt encoding and level generation systems
and use a model without pretraining for the latter (while still re-
taining the benefit of pretraining for the component of the model
that understands natural language prompts).

Finally, there is room for much greater sophistication in the
techniques used to control LLM outputs. Research in the area of
controllable language model decoding [11] offers the opportunity
to leverage existing work in PCG through reinforcement learning.
More modern LLMs, especially, have also been shown to benefit
from careful prompt engineering [34]. A combination of these ap-
proaches might allow for LLM generators that are better equipped
to obey the functional constraints of game levels.

9 CONCLUSION
Large languages models are highly versatile. Beyondmerely predict-
ing likely continuations of text, they are capable of an impressive



Level Generation Through Large Language Models FDG 2023, April 12–14, 2023, Lisbon, Portugal

range of natural language tasks. In this work, we show that generat-
ing video game levels can be added to that list. With sufficient data
and training, LLMs are able to produce a diverse set of novel and
playable Sokoban levels. We show that the pretraining generally af-
forded to these models does not hinder its ability to generate game
levels, though any actual effect is unclear. We also demonstrate
that, for GPT-2, the domain of game level generation is beholden
to the same data scaling trends that apply to many natural lan-
guage domains – model performance is strongly dependent on the
availability of data. Cutting-edge LLMs like GPT-3 may have the
potential to better generalize from small amounts of training data,
though more work must be done before decisive conclusions can
be drawn. With respect to controllability, we find that a simple
prompting approach is sufficient for observable level characteris-
tics like the proportion of empty tiles, but breaks down on more
complicated metrics like solution length. Overall, the use of LLMs
for game level generation shows promise despite it being a wildly
different domain from natural language, complete with its own set
of constraints and syntax. LLMs also seem potentially poised to
overcome the general lack of available game level data, potentially
offering a new way forward for procedural content generation
through machine learning.

ETHICAL STATEMENT
Large language models have known biases and limitations, and
can occasionally produce harmful or toxic text. While our models
are trained to produce game levels, such training does not entirely
eliminate this possibility. In addition, we note the possibility of
LLMs copying published game levels included in their pretraining
corpuses, a fact which should be considered before any form of
widespread or commercial adoption.
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