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ABSTRACT
Procedural Level Generation provides tools and techniques for gen-
erating many game levels from a single specification. Instead of
creating levels by hand, level designers make use of generators that
automate the creation process. However, iteratively improving a
level’s design requires encoding generators of adventures, puzzles
and encounters in notations that bear little resemblance to gener-
ated content. Raising the level quality is difficult, because it is hard
to reason about bugs that can manifest inside generated content.

We take the position that debugging requires special attention.
We argue that advancing the area of PCG calls for tools and de-
bugging techniques that speed up procedural level design and em-
power level designers. We propose exploring how Domain-Specific
Languages can help in authoring a level’s design, validating the
generator’s code, and debugging issues in generated content. We
introduce Mental Maps, a visual language that expresses the spacial
relations between rooms, objects and paths. We discuss how Men-
tal Maps can serve as generator blueprints before the generation
happens, and as debugging lenses for projecting issues afterwards.
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1 INTRODUCTION
Procedural Level Generation studies how to generate many game
levels from a single specification, e.g., for games such as platformers
or dungeon crawlers [11]. Over the years, authors have described
many versatile techniques for creating generators [5, 11], exploring
design spaces [8], analyzing expressive ranges [2, 10], and creating
mixed-initiative design tools [1, 5, 6]. Although debugging is widely
understood as an important facet of Procedural Content Genera-
tion (PCG) [9], few approaches propose debugging techniques that
directly integrate with the source code of generation engines [7, 13].

In this position paper, we argue that advancing theory and prac-
tice of PCG requires studying how debugging techniques can help
to automate and speed-up procedural level design. In particular,
we explore how Domain-Specific Languages (DSLs) can help in au-
thoring a level’s design, validating the generator’s code, verifying
generated content, tracking issues, and debugging these artifacs
simultaneously. To support our argument, we discuss 1) why a need
for debugging arises in a typical automation process and 2) how
‘mental maps’, visual DSLs for bridging the gap between level de-
signs and generated content, can help improve debugging facilities.

2 PROCEDURAL LEVEL DESIGN
Game levels of Roguelikes consist of content such as forests, roads
and clearings that situate activities, quests and puzzles involving en-
emies, objects and skills. Designers make sketches, draw diagrams
and write texts that compose this content for wondrous adventures,
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Figure 1: Designing and debugging generated game levels

thrilling encounters, perilous challenges and glorious victories. In-
stead of creating the levels by hand, game developers can opt for
constructing generators that help to automate the creation pro-
cess. The challenge is to devise a content generation strategy for
producing interesting variations and combinations that realize the
design’s quality, overall structure and gameplay goals. Figure 1
illustrates activities (rounded rectangles) in the automation process
that consume and produce (arrows) different artifacts (rectangles).

The implementation of a generator involves translating its level
design into source code. Engines represent and transform content,
using formalisms and techniques such as design patterns [1], An-
swer Set Programming or logical constraints [8], transformative
grammars (L-Systems) [5] and SMT solvers [14]. To accommodate
evolving level designs and gameplay goals, designers constantly
require changes to the code controlling the algorithms and transfor-
mation pipelines that produce the levels. However, improving the
quality is difficult, because it is hard to reason about bugs that can
manifest inside potentially generated content. As a result, many
changes are complex, time-consuming and error-prone. To get to
grips with this complexity, designers need better tools and debug-
ging techniques for analyzing the impact of changes [2, 10, 13].

Play testing generated levels is particularly complex. In practice,
this means playing generated levels and eyeballing the content,
which is costly, repetitive and takes too much time. For better test
coverage, level designers need test automation techniques that can
identify issues automatically. For instance for: 1) verifying the struc-
tures of levels against the design and 2) testing dynamic interaction
sequences, for ensuring valid game states and progressions.

Additionally, when players report bugs about a particular level,
these issues need to be recorded and tracked for making fixes. The
challenge is relating the issues to specific parts of the generated
content, the design and the generator’s sources. Level designers
need tools and techniques for reproducing the issues and debugging
the related level artifacts simultaneously in an integrated manner.
Next, we discuss addressing these challenges with ‘mental maps’.
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Figure 2: Mental Map of Elsa’s Magic Ice Castle

3 MENTAL MAPS
In a recent blog post, Dormans describes how Ludomotion’s content
generation strategy has been instrumental for the innovative pro-
cedural level designs of Unexplored 2 [4]. Ludomotion uses visual
level designs that resemble generated game levels. The diagrams
depict abstract spacial relations between places, objects and paths,
and serve as blueprints for the game’s grammar-based level genera-
tor Ludoscope [3, 5]. Ludoscope offers a visual editor for expressing
transformation pipelines but lacks a debugger. Once encoded, the
level blueprints cannot easily be inspected or used to track content.

Based on this notation, we proposeMentalMaps, a visual Domain-
Specific Language for procedural level design for controlling the
variability of level generators. Figure 2 shows a design of a castle
level with a hallway and two connected rooms. The player has to
get a key from Olaf’s room to obtain a dress from Elsa’s wardrobe.

First, we explain how to manually derive level properties from
Mental Maps. We observe the following: 1) in Olaf’s room is a key;
2) the key can be obtained; 3) the key is visible from the door; 4) in
Elsa’s room is a wardrobe. 5) the wardrobe is locked; 6) that lock
is visible from the door; 7) in the wardrobe is a dress; and 8) the
dress can be obtained; 9) the dress cannot be obtained without the
key (we omit the rest). Next, we compare these constraints with
four simplified levels. Figure 3 shows tile maps that illustrate good
and bad qualities. Only the first one (Figure 3a) conforms to every
design constraint. Figure 3b violates constraint 3, Figure 3c violates
constraints 6, 7 and 9 and Figure 3d violates constraints 2 and 7.

4 DISCUSSION
Here we discuss how Mental Maps, a conceptual approach exempli-
fied by the DSL of Section 3, could help to debug generated content.
We propose extending tools such as Ludoscope with a means for au-
thoring Mental Maps as blueprints that control the variability of the
generator. Instead of manually translating hand-written diagrams
into source code, the tool derives content constraints automatically.

This approach builds on existing theory. In particular, textual
notations for expressing level properties have been used for identi-
fying [13] and preventing [7] low quality combinations of rooms,
quests and objects. Using origin tracking [12], the names and source
locations (visual placements, lines and column numbers) of the con-
tent can be passed to a generator’s implementation. In debug mode,
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Figure 3: Tile Maps of Example levels

the generator can copy these locations into the generated content
at no additional cost. The debugger can trace the origins of reported
issues inside generated levels through the generator’s sources back
to the design, as shown in Figure 1. Once identified, issues can be
marked on the Mental Map (as a debug lens), as shown in Figure 2.

Of course, we are still in the process of constructing the tools that
implement our conceptual approach for test automation and source
level debugging. However, it could provide the following benefits:
1) expressing level designs visually; 2) mapping cognitive design
processes to the content generation; 3) raising the level quality.

Mental Maps are generator-agnostic, and not limited to grammar-
based level generation. For instance, generators based on ASP or
SMT solvers use constraints as first-class citizens to prevent low
quality levels. Deriving constraints directly from Mental Maps level
designs could help ease the authorial burden. Finally, issue tracking
using Mental Maps does not depend on a particular kind of content
representation or generation technique.

5 CONCLUSION
We have argued for advancing procedural level generation with
debugging techniques and tools that speed up the level design pro-
cess and empower designers. In addition, we have described Mental
Maps as a promising research direction to help improve debugging.
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