
Debugging Procedural Level Designs with Mental Maps
Riemer van Rozen

rozen@cwi.nl
Centrum Wiskunde & Informatica

The Netherlands

Georgia Samaritaki
samaritakigeorgia@gmail.com

University of Amsterdam
The Netherlands

Joris Dormans
joris@ludomotion.com

Ludomotion
The Netherlands

ABSTRACT
Procedural Level Generation provides tools and techniques for gen-
erating many game levels from a single specification. Instead of
creating levels by hand, level designers make use of generators that
automate the creation process. However, iteratively improving a
level’s design requires encoding generators of adventures, puzzles
and encounters in notations that bear little resemblance to gener-
ated content. Raising the level quality is difficult, because it is hard
to reason about bugs that can manifest inside generated content.

We take the position that debugging requires special attention.
We argue that advancing the area of PCG calls for tools and de-
bugging techniques that speed up procedural level design and em-
power level designers. We propose exploring how Domain-Specific
Languages can help in authoring a level’s design, validating the
generator’s code, and debugging issues in generated content. We
introduce Mental Maps, a visual language that expresses the spacial
relations between rooms, objects and paths. We discuss how Men-
tal Maps can serve as generator blueprints before the generation
happens, and as debugging lenses for projecting issues afterwards.

KEYWORDS
procedural content generation, level design, debugging

1 INTRODUCTION
Procedural Level Generation studies how to generate many game
levels from a single specification, e.g., for games such as platformers
or dungeon crawlers [11]. Over the years, authors have described
many versatile techniques for creating generators [5, 11], exploring
design spaces [8], analyzing expressive ranges [2, 10], and creating
mixed-initiative design tools [1, 5, 6]. Although debugging is widely
understood as an important facet of Procedural Content Genera-
tion (PCG) [9], few approaches propose debugging techniques that
directly integrate with the source code of generation engines [7, 13].

In this position paper, we argue that advancing theory and prac-
tice of PCG requires studying how debugging techniques can help
to automate and speed-up procedural level design. In particular,
we explore how Domain-Specific Languages (DSLs) can help in au-
thoring a level’s design, validating the generator’s code, verifying
generated content, tracking issues, and debugging these artifacs
simultaneously. To support our argument, we discuss 1) why a need
for debugging arises in a typical automation process and 2) how
‘mental maps’, visual DSLs for bridging the gap between level de-
signs and generated content, can help improve debugging facilities.

2 PROCEDURAL LEVEL DESIGN
Game levels of Roguelikes consist of content such as forests, roads
and clearings that situate activities, quests and puzzles involving en-
emies, objects and skills. Designers make sketches, draw diagrams
and write texts that compose this content for wondrous adventures,

Design:

Code:

Content:

Play:

Design Level Design Validate

Implement Generator Debug

Generate Levels Verify

Play Test Issues Track

Figure 1: Designing and debugging generated game levels

thrilling encounters, perilous challenges and glorious victories. In-
stead of creating the levels by hand, game developers can opt for
constructing generators that help to automate the creation pro-
cess. The challenge is to devise a content generation strategy for
producing interesting variations and combinations that realize the
design’s quality, overall structure and gameplay goals. Figure 1
illustrates activities (rounded rectangles) in the automation process
that consume and produce (arrows) different artifacts (rectangles).

The implementation of a generator involves translating its level
design into source code. Engines represent and transform content,
using formalisms and techniques such as design patterns [1], An-
swer Set Programming or logical constraints [8], transformative
grammars (L-Systems) [5] and SMT solvers [14]. To accommodate
evolving level designs and gameplay goals, designers constantly
require changes to the code controlling the algorithms and transfor-
mation pipelines that produce the levels. However, improving the
quality is difficult, because it is hard to reason about bugs that can
manifest inside potentially generated content. As a result, many
changes are complex, time-consuming and error-prone. To get to
grips with this complexity, designers need better tools and debug-
ging techniques for analyzing the impact of changes [2, 10, 13].

Play testing generated levels is particularly complex. In practice,
this means playing generated levels and eyeballing the content,
which is costly, repetitive and takes too much time. For better test
coverage, level designers need test automation techniques that can
identify issues automatically. For instance for: 1) verifying the struc-
tures of levels against the design and 2) testing dynamic interaction
sequences, for ensuring valid game states and progressions.

Additionally, when players report bugs about a particular level,
these issues need to be recorded and tracked for making fixes. The
challenge is relating the issues to specific parts of the generated
content, the design and the generator’s sources. Level designers
need tools and techniques for reproducing the issues and debugging
the related level artifacts simultaneously in an integrated manner.
Next, we discuss addressing these challenges with ‘mental maps’.



van Rozen, Samaritaki and Dormans

Elsa’s Room Wardrobe

dress3c
Olaf’s Room

key 3b
Hallway

Place d
visible door locked key objective

Figure 2: Mental Map of Elsa’s Magic Ice Castle

3 MENTAL MAPS
In a recent blog post, Dormans describes how Ludomotion’s content
generation strategy has been instrumental for the innovative pro-
cedural level designs of Unexplored 2 [4]. Ludomotion uses visual
level designs that resemble generated game levels. The diagrams
depict abstract spacial relations between places, objects and paths,
and serve as blueprints for the game’s grammar-based level genera-
tor Ludoscope [3, 5]. Ludoscope offers a visual editor for expressing
transformation pipelines but lacks a debugger. Once encoded, the
level blueprints cannot easily be inspected or used to track content.

Based on this notation, we proposeMentalMaps, a visual Domain-
Specific Language for procedural level design for controlling the
variability of level generators. Figure 2 shows a design of a castle
level with a hallway and two connected rooms. The player has to
get a key from Olaf’s room to obtain a dress from Elsa’s wardrobe.

First, we explain how to manually derive level properties from
Mental Maps. We observe the following: 1) in Olaf’s room is a key;
2) the key can be obtained; 3) the key is visible from the door; 4) in
Elsa’s room is a wardrobe. 5) the wardrobe is locked; 6) that lock
is visible from the door; 7) in the wardrobe is a dress; and 8) the
dress can be obtained; 9) the dress cannot be obtained without the
key (we omit the rest). Next, we compare these constraints with
four simplified levels. Figure 3 shows tile maps that illustrate good
and bad qualities. Only the first one (Figure 3a) conforms to every
design constraint. Figure 3b violates constraint 3, Figure 3c violates
constraints 6, 7 and 9 and Figure 3d violates constraints 2 and 7.

4 DISCUSSION
Here we discuss how Mental Maps, a conceptual approach exempli-
fied by the DSL of Section 3, could help to debug generated content.
We propose extending tools such as Ludoscope with a means for au-
thoring Mental Maps as blueprints that control the variability of the
generator. Instead of manually translating hand-written diagrams
into source code, the tool derives content constraints automatically.

This approach builds on existing theory. In particular, textual
notations for expressing level properties have been used for identi-
fying [13] and preventing [7] low quality combinations of rooms,
quests and objects. Using origin tracking [12], the names and source
locations (visual placements, lines and column numbers) of the con-
tent can be passed to a generator’s implementation. In debug mode,

L
K D

(a) Sound level

K L
D

(b) Unsound level (structure)

K D

L

(c) Unsound level (challenge)

K L

(d) Unplayable level

wall floor door L lock K key D dress

Figure 3: Tile Maps of Example levels

the generator can copy these locations into the generated content
at no additional cost. The debugger can trace the origins of reported
issues inside generated levels through the generator’s sources back
to the design, as shown in Figure 1. Once identified, issues can be
marked on the Mental Map (as a debug lens), as shown in Figure 2.

Of course, we are still in the process of constructing the tools that
implement our conceptual approach for test automation and source
level debugging. However, it could provide the following benefits:
1) expressing level designs visually; 2) mapping cognitive design
processes to the content generation; 3) raising the level quality.

Mental Maps are generator-agnostic, and not limited to grammar-
based level generation. For instance, generators based on ASP or
SMT solvers use constraints as first-class citizens to prevent low
quality levels. Deriving constraints directly from Mental Maps level
designs could help ease the authorial burden. Finally, issue tracking
using Mental Maps does not depend on a particular kind of content
representation or generation technique.

5 CONCLUSION
We have argued for advancing procedural level generation with
debugging techniques and tools that speed up the level design pro-
cess and empower designers. In addition, we have described Mental
Maps as a promising research direction to help improve debugging.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their constructive com-
ments that have helped to improve this paper.

REFERENCES
[1] Alexander Baldwin, Steve Dahlskog, José M. Font, and Johan Holmberg. 2017.

Mixed-Initiative Procedural Generation of Dungeons using GameDesign Patterns.
In IEEE Conference on Computational Intelligence and Games, CIG 2017, New York,
NY, USA, August 22-25, 2017. IEEE, 25–32. https://doi.org/10.1109/CIG.2017.
8080411

[2] Michael Cook, Jeremy Gow, Gillian Smith, and Simon Colton. 2021. Danesh: Inter-
active Tools for Understanding Procedural Content Generators. IEEE Transactions
on Games (2021), 1–1. https://doi.org/10.1109/TG.2021.3078323

https://doi.org/10.1109/CIG.2017.8080411
https://doi.org/10.1109/CIG.2017.8080411
https://doi.org/10.1109/TG.2021.3078323


Debugging Procedural Level Designs with Mental Maps

[3] Joris Dormans. 2012. Engineering Emergence: Applied Theory for Game Design.
PhD Thesis. University of Amsterdam.

[4] Joris Dormans. 2021. The Theory of The Place: A Level Design Philosophy for
Unexplored 2. Gamasutra (Oct. 2021). https://www.gamedeveloper.com/blogs/
the-theory-of-the-place-a-level-design-philosophy-for-unexplored-2

[5] Daniel Karavolos, Anders Bouwer, and Rafael Bidarra. 2015. Mixed-Initiative
Design of Game Levels: Integrating Mission and Space into Level Generation.
In Proceedings of the 10th International Conference on the Foundations of Digi-
tal Games, FDG 2015, Pacific Grove, CA, USA, June 22-25, 2015. Society for the
Advancement of the Science of Digital Games.

[6] Antonios Liapis, Georgios N. Yannakakis, and Julian Togelius. 2013. Sentient
Sketchbook: Computer-Aided Game Level Authoring. In Proceedings of the 8th
International Conference on the Foundations of Digital Games, FDG 2013, Chania,
Crete, Greece, May 14-17, 2013. Society for the Advancement of the Science of
Digital Games, 213–220.

[7] Georgia Samaritaki. 2022. Debugging Grammars for Level Generation. Master’s
Thesis. Master of Software Engineering, University of Amsterdam.

[8] Adam M. Smith and Michael Mateas. 2011. Answer Set Programming for Proce-
dural Content Generation: A Design Space Approach. IEEE Trans. Comput. Intell.
AI Games 3, 3 (2011), 187–200. https://doi.org/10.1109/TCIAIG.2011.2158545

[9] Gillian Smith. 2013. Level Design Processes and Experiences. AK Peters/CRC Press,
Chapter Procedural Content Generation: An Overview, 159–183.

[10] Gillian Smith and Jim Whitehead. 2010. Analyzing the Expressive Range of
a Level Generator. In Proceedings of the 2010 Workshop on Procedural Content
Generation in Games, PCGames ’10, Monterey, California, USA, June 18, 2010. ACM,
4:1–4:7. https://doi.org/10.1145/1814256.1814260

[11] Roland van der Linden, Ricardo Lopes, and Rafael Bidarra. 2014. Procedural
Generation of Gungeons. IEEE Trans. Comput. Intell. AI Games 6, 1 (2014), 78–89.
https://doi.org/10.1109/TCIAIG.2013.2290371

[12] Arie van Deursen, Paul Klint, and Frank Tip. 1993. Origin Tracking. J. Symb.
Comput. 15, 5/6 (1993), 523–545. https://doi.org/10.1016/S0747-7171(06)80004-0

[13] Riemer van Rozen and Quinten Heijn. 2018. Measuring Quality of Grammars for
Procedural Level Generation. In Proceedings of the 13th International Conference
on the Foundations of Digital Games, FDG 2018, Malmö, Sweden, August 07-10,
2018. ACM, 56:1–56:8. https://doi.org/10.1145/3235765.3235821

[14] Jim Whitehead. 2020. Spatial Layout of Procedural Dungeons Using Linear
Constraints and SMT Solvers. In FDG ’20: International Conference on the Founda-
tions of Digital Games, Bugibba, Malta, September 15-18, 2020. ACM, 101:1–101:9.
https://doi.org/10.1145/3402942.3409603

https://www.gamedeveloper.com/blogs/the-theory-of-the-place-a-level-design-philosophy-for-unexplored-2
https://www.gamedeveloper.com/blogs/the-theory-of-the-place-a-level-design-philosophy-for-unexplored-2
https://doi.org/10.1109/TCIAIG.2011.2158545
https://doi.org/10.1145/1814256.1814260
https://doi.org/10.1109/TCIAIG.2013.2290371
https://doi.org/10.1016/S0747-7171(06)80004-0
https://doi.org/10.1145/3235765.3235821
https://doi.org/10.1145/3402942.3409603

	Abstract
	1 Introduction
	2 Procedural Level Design
	3 Mental Maps
	4 Discussion
	5 Conclusion
	Acknowledgments
	References

