
Spatial Layout of Procedural Dungeons Using Linear Constraints
and SMT Solvers

Jim Whitehead
ejw@ucsc.edu

Univ. of California, Santa Cruz
Santa Cruz, CA

Figure 1: Using PCG to create dungeons.

ABSTRACT
Dungeon generation is among the oldest problems in procedural
content generation. Creating the spatial aspects of a dungeon re-
quires three steps: random generation of rooms and sizes, placement
of these rooms inside a fixed area, and connecting rooms with pas-
sageways. This paper uses a series of integer linear constraints,
solved by a satisfiability modulo theories (SMT) solver, to perform
the placement step. Separation constraints ensure dungeon rooms
do not intersect and maintain a minimum fixed separation. Design-
ers can specify control lines, and dungeon rooms will be placed
within a fixed distance of these control lines. Generation times
vary with number of rooms and constraints, but are often very
fast. Spatial distribution of solutions tend to have hot spots, but is
surprisingly uniform given the underlying complexity of the solver.
The approach demonstrates the effectiveness of a declarative ap-
proach to dungeon layout generation, where designers can express
desired intent, and the SMT solver satisfies this if possible.

CCS CONCEPTS
• Applied computing→ Computer games; • Software and its
engineering → Interactive games; • Computing methodolo-
gies → Spatial and physical reasoning.

KEYWORDS
procedural content generation, dungeon generation, rectangle pack-
ing, linear constraints, satisfiability modulo theories, SMT

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
PCG ’20, September 15–18, 2020, Bugibba, Malta
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8807-8/20/09.
https://doi.org/10.1145/3402942.3409603

ACM Reference Format:
Jim Whitehead. 2020. Spatial Layout of Procedural Dungeons Using Linear
Constraints and SMT Solvers. In Proceedings of the 11th Workshop on Proce-
dural Content Generation (PCG 2020), September 15–18, 2020, Bugibba, Malta.
ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3402942.3409603

1 INTRODUCTION
Dungeons are a common element in fantasy themed computer
games. In a dungeon crawler, the player proceeds through a series
of dungeon rooms, battling monsters, collecting treasure, and solv-
ing puzzles. Rogue, one of the early games to feature procedural
content generation, is a dungeon crawler with generated dungeons.
It demonstrated the feasibility of automated dungeon generation,
and inspired an entire genre of Roguelike games where adventur-
ing through a procedural dungeon is a defining characteristic [17].
Generally viewed as underground labyrinths, dungeons come in
two main forms: a built environment consisting of a set of rooms
connected by passageways, or a natural environment composed of
a series of interconnected caverns. The focus of this paper is on
built environment dungeons.

Procedural dungeon generation consists of up to three broad
phases: (1) mission: determining the dungeon’s goals and puzzles
(especially lock and key puzzles)[13][32], (2) room layout: generat-
ing rooms and placing them in space consistent with the mission,
and (3) interior decoration and layout: final placement of monsters,
furnishings, collectibles, and treasure. Many dungeon generators
lack the mission phase, due to its complexity. Interior decoration
and layout can be viewed as an example of the interior layout (or
scene synthesis) problem [35][21].

We view the room layout phase as consisting of three steps: se-
lection, layout, and connection. Room selection begins with room
selection. Rooms are either selected from a library of pre-existing
rooms, or have randomly generated sizes. In either case, the re-
sult is a collection of dungeon rooms of varying sizes. Layout in-
volves placing these rooms within a fixed-size rectangular playfield

https://doi.org/10.1145/3402942.3409603
https://doi.org/10.1145/3402942.3409603


PCG ’20, September 15–18, 2020, Bugibba, Malta Whitehead

area which limits the maximum size of the dungeon. The key chal-
lenge in dungeon layout is placing rooms in the playfield while
avoiding overlaps. Once rooms have been placed, the connection
step connects them with passageways (if separate) or doorways (if
touching)[8].

The need to place rooms without overlap has driven existing ap-
proaches for dungeon layout. In space partitioning approaches, the
playfield is subdivided into non-overlapping cells, and then a room
is placed entirely inside each cell[30]. In the original Rogue, space
was partitioned into a 3x3 grid and a room was randomly gener-
ated in each grid cell, with some cells left empty. Other approaches
involve use of space partitioning trees of varying kinds (e.g., binary
space partition trees). This approach has the drawback of forcing
rooms to be located wholly inside cells to ensure lack of overlap.
Placing a room such that it overlaps a cell boundary is not allowed,
which limits the possible locations where a room can be placed.
Complex arrangements of rooms is typically not possible, such as
multiple rooms with varying sizes in close proximity to each other.
This is because the space partitioning algorithm typically cannot
guarantee that a specific set of grid shapes will be located next to
each other.

In random walk approaches, an agent randomly traverses the
playfield, placing rooms or passageways during its travels. While
allowing for greater flexibility in room locations, it has the drawback
of placement bias, since rooms will more frequently be placed
close to the start location [7][16][30]. Other placement approaches
include force directed layout, where rooms all begin in the center of
the playfield, and they “push” against one another in an iterative
physics simulation until there are no overlaps [1]. This tends to
locate rooms in a rough circle around the center of the playfield,
avoiding corners. The place and test approach randomly places a
room, checks for intersections, and then re-places as necessary [8].
The drawback is the exponential increase in re-place steps as room
coverage increases, and the possibility of creating (and inability
to detect) unsolvable layouts. This is addressed in [8] by limiting
the total number of placement tries, and accepting the resulting
number of rooms.

An over-arching problemwith existing dungeon layout approaches
is lack of designer control. Two simple scenarios highlight this. Con-
sider a designer who wishes to place a large throne room in the
middle of the playfield, taking up 20% or more of the entire space.
An antechamber must be located by the front entrance, and an
escape room must be located near the thrones. Guaranteeing satis-
faction of these constraints is beyond the capabilities of existing
layout approaches. Space partition grids would need additional
mechanism to ensure proximity constraints are met, and might
have trouble creating the appropriate set of partitions. Random
walk and force-directed approaches lack awareness of constraints
such as these. The second design scenario involves a designer pro-
viding a series of “control lines” which describe a path through the
playfield with dungeon rooms to be placed such that they are in
proximity to the control lines. Existing approaches are incapable of
guaranteeing rooms will be placed along such control lines.

To ensure high degrees of designer control, the dungeon place-
ment approach must meet several requirements. It must be possible
to specify basic constraints, such as freedom from overlap. More
complex designer constraints must be expressible. Rooms should

have complete freedom of placement location, subject to any con-
straints upon them. The layout algorithm must be capable of si-
multaneously satisfying basic and designer constraints, or indicate
these constraints are unsatisfiable. Finally, the layout algorithm
should be fast, and have relatively uniform placement of rooms in
allowable locations.

We view dungeon layout as a constraint satisfaction problem,
where the goal is to generate sets of valid solutions to a system of
constraints on allowable room locations. Constraints are generally
linear in form, that is, constraints take the form of linear equations
generally involving the x,y location of the upper left corner of a
room. This paper explores use of the Z3 SMT solver to perform
dungeon layout using linear constraints. SMT stands for satisfiabil-
ity modulo theories, and an SMT solver can be viewed as a boolean
satisfiability solver (a SAT solver, the “satisfiability” part of the
name) which can additionally handle other classes of constraints.
These other constraint types each have different algorithms for
reasoning about and solving them—the general name “theory” is
used to describe these algorithms. Hence, “satisfiability modulo
theories” can be viewed as boolean satisfiability plus additional
theories. The “satisfiability modulo theories” name is unfortunate,
since it’s needlessly opaque and hides its true nature as a general
purpose constraint solver. Z3 is a specific constraint solver which
supports many different constraint types1. It has been under de-
velopment by Microsoft Research for over 8 years (open source
since 2015), has received multiple awards, and is in widespread use
across many projects [12].

This paper makes the following contributions. It expresses the
dungeon layout problem as a constraint satisfaction problem, and
describes the necessary basic and designer linear constraints. An im-
plementation of this approach is described using the Z3 SMT solver.
It demonstrates how an SMT solver can address a long-standing
procedural content generation problem, and provide significantly
enhanced designer control over the outcome. The behavior of this
implementation is explored, focusing on execution speed and the
frequency distribution of solutions.

2 RELATEDWORK
2.1 Dungeon Room Layout
Several authors provide descriptions of “classical” techniques for
dungeon room layout. Van der Linden et al. provide the first survey
of dungeon and cavern generation techniques, including cellular au-
tomata, generative grammars, and genetic algorithms [39]. Shaker
et al. provide an introduction to constructive techniques for dun-
geon generation, including space partitions and random walks, as
well as use of cellular automata for cavern generation [30]. Baron
separates room placement (random and binary space partition)
and corridor creation (random point connect, random walk, binary
space partition), and empirically explores combinations of these
[7]. Williams describes binary space partitions, delaunay graphs,
and cellular automata to generate dungeons [25].

Dormans introduced the idea of first generating the goals and
puzzles of a level in the form of a “mission graph” and thereby
introducing the mission phase of generation. This mission graph

1https://github.com/Z3Prover/z3/wiki



Spatial Layout of Procedural Dungeons Using Linear Constraints and SMT Solvers PCG ’20, September 15–18, 2020, Bugibba, Malta

is used to control physical dungeon layout [13]. Van der Linden
explored this idea further by generating action graphs, and then
using these to drive physical dungeon layout for the game Dwarf
Quest [29]. Karvalos et al. build on this idea, and demonstrate
mission and dungeon generation using a pipeline of generative
grammars using the Ludoscope tool [10]. Lavender and Thompson
also explore the idea of dungeon generation using mission graphs
for an open-source Zelda-like game [23].

Some researchers have explored evolutionary algorithms for
dungeon creation. In the Sentient Sketchbook by Liapis et al., a
genetic algorithm generates different level alternatives which are
presented to the use in a mixed-initiative design tool. One inter-
pretation of these levels is as dungeons [3]. Baldwin et al. created
a mixed-initiative dungeon generator for Zelda-like levels where
dungeon concepts are initially generated from a catalog of design
patterns [5]. An evolutionary algorithm creates four new dungeon
ideas which are presented to the designer for possible adoption.
The paper has a rich set of metrics for evaluating levels. Valtchanov
and Brown create a graph structure representing a dungeon layout,
and then evolve these graphs to find increasingly large and com-
plex dungeons. Graphs are converted into rooms via a placement
algorithm that prunes sub-trees when collisions are detected [38].
Liapis et al. use evolutionary search to generate dungeons for the
Roguelike game Minidungeons. Different player personas (monster
killer, treasure collector, speedrunner, survivalist) were used to de-
velop evolved player controllers. These, in turn, were used to guide
evolutionary development of dungeon levels, leading to different
level geometry for each persona type [24].

A growing body of research focuses on declarative dungeon
generation and layout. Adam Smith used Answer Set Programming
(ASP) to declaratively describe features of cavern-type dungeons,
including playability constraints such as reachability of the exit
[31]. Roden and Parberry describe a level design approach involv-
ing constraints expressed over a graph structure, but without detail
on the expression of the constraints or the constraint solving ap-
proach [28]. Anthony Smith and Joanna Bryson use ASP for the
room selection, layout, connection and decoration steps of dungeon
generation, but do not use mission graphs [2]. In contrast, recent
work by T. Smith et al. generates a mission graph using ASP, but
does not focus on physical layout [32]. The focus of this ASP work
on using declarative programming to generate caverns and dun-
geons is aligned with our focus on declaratively specifying layout
constraints using SMT.

Though a detailed comparison of the ASP and SMT approaches
is beyond the scope of this paper, we can mention a few tradeoffs.
For boolean and linear constraints, both SMT and ASP appear to
have similar expressive power, though the Z3 solver appears to
have a greater range of constraints it can handle beyond these.
Syntactically, ASP requires learning a new programming language
(AnsProlog), while Z3 supports multiple programming language
bindings which allow constraints to be expressed via API calls. The
author finds the AnsProlog language to be awkward and frustrating
to use, but notes others are more enthusiastic; personal taste might
decide whether the AnsProlog or API approach is preferred. The
Z3 language bindings also make it easier to transfer data to/from
the constraint solver using Z3. The Z3 solver generally performs
random sampling of the solution space, as compared to ASP which

outputs answer sets in order, requiring a further sampling step to
pull random instances. A detailed comparison of ASP vs SMT for
equivalent dungeon generation tasks would be interesting, includ-
ing performance trade-offs.

2.2 Similar Layout Problems
Placing furniture within a room, subject to constraints, is known as
the interior layout problem. Interior layout is very similar to dungeon
room layout: placement of furniture shapes (dungeon rooms) inside
the walls of a room (playfield) without overlaps, subject to distance
and adjacency (and control line) constraints. Interior layout was an
early application domain for constraint solving, an example being
Pfefferkorn’s 1975 CACM paper [26]. This paper describes furniture
layout subject to minimum distance, room quadrant, orientation,
adjacency, no overlap, viewable, and path reachable constraints,
which are resolved by a custom constraint solver implemented in
Lisp. Later researchers brought furniture layout under the more
general umbrella of declarative modeling where designers provide
declarative descriptions (in the form of constraints) of how they
want a 3D scene to be composed from 3D objects, with solutions
determined by a constraint solver. Gaildrat [40] and Tutenel et al.
[36] provide an overview of issues involved in declarative model-
ing, and specific examples of declarative modeling systems include
[9][22][37]. Within the PCG community, Balint and Bidarra present
an approach for generating present-day room interiors that could
be used for dungeon room decoration [6], and Tutenel et al. provide
a constraint-based approach for interior layout [35].

Placing rooms within the walls of a building, subject to con-
straints, is variously known as the room layout, building layout,
space layout planning, or spatial layout problem. Architectural room
layout is similar to dungeon room layout, in that both involve place-
ment of rooms within a fixed envelope, with two key differences.
Architectural rooms are expected to completely fill the shape de-
fined by the building walls while dungeons rooms only partially
fill the playfield. Architectural rooms are adjacent to one another
without overlaps, while dungeon rooms may either be adjacent or
separate from each other, also without overlap. Lobos and Danath
(2010) provide architectural requirements for space layout planning,
and trace computational approaches back to 1955 [11]. They sur-
vey both academic and commercial approaches. Hamouda provides
a survey of space layout planning from 1965-2000, with greater
focus on constraint-based approaches [18]. The computer games
community started exploring this problem in 2006 with Hahn et
al.’s paper on view-specific building interiors [14], and Martin’s
approach which generates a layout graph using graph grammars,
then expands the volume of each room via a “pressure” model [20].
Lopes et al. expand on Martin’s ideas, describing a multi-stage
approach involving hierarchical subdivision of building spaces, res-
olution of adjacency constraints, and a final room expansion phase
[27]. Recent work in architecture has explored the use of neural
networks (mostly convolutional neural networks) for architectural
room layout [19][33].

Our formulation of the dungeon layout problem is very similar
to the classic bin packing (rectangle packing) problem. However,
bin packing is typically framed as finding an optimal packing of
items into a space. For dungeon generation, we typically wish



PCG ’20, September 15–18, 2020, Bugibba, Malta Whitehead

rooms to be spread out across the space to maximize designer
and gameplay goals. Stoykov explored use of SMT solvers for the
rectangle packing problem in his Masters thesis, and developed
linear constraints similar to those in this paper [34].

Overall, dungeon room layout differs from these other layout
problems primarily in the type of constraints. As compared to
the majority of constraint solving approaches for layout problems,
this paper uses an off-the-shelf SMT constraint solver, rather than
implementing a constraint solver from scratch. Ideally this reduces
the gap between the declarative specification of constraints and
their solution.

3 DUNGEON ROOM LAYOUT USING LINEAR
CONSTRAINTS

The dungeon room layout problem is formally described as fol-
lows. Given a set of N rooms where each room is ri with varying
widths (widthi ) and heights (heiдhti ) and a playfield with dimen-
sions playw and playh , place each ri so that it is fully inside the
playfield, and no room overlaps one another. Each room has a loca-
tion (xri ,yri ) defined to be the upper left hand corner of the room,
assuming a typical game coordinate system with the origin in the
upper left, with x-axis increasing to the right and y-axis increasing
downwards (typical for computer graphics). In the approach de-
scribed herein, rooms are limited to be rectangular in shape (instead
of arbitrary polygons), cannot be rotated (have fixed orientation),
and must be axis-aligned.

Linear constraints are expressions between one or more variables
that take the form of one of the following. There are no exponents,
logarithms, square roots, etc.

c1x1 + c2x2 + ...cnxn ≤ 0
c1x1 + c2x2 + ...cnxn = 0
c1x1 + c2x2 + ...cnxn ≥ 0

In practice, the Z3 SMT solver permits constraints to be expressed
in any form, not just equations with a zero on one side. Division is
also permitted in Z3, though this has significant negative impacts on
performance (perhaps due to using a different decision procedure
within Z3). Coefficients can be negative and hence each of the
additions above can be read as “addition or subtraction”. Coefficients
are limited to integers, which can be challenging for expressing
slopes (see discussion below in control lines). These constraint
equations can be connected together with logical and & or.

With this notation in place, we can proceed to the basic and
designer constraints.

3.1 Basic Constraints
Within-playfield constraints ensure that every room is placed inside
the playfield:

∀ri ∈ Rooms,xri >= 0 ∧ xri < playw −widthi ∧

yri >= 0 ∧ yri < playh − heiдhti (1)

The starting location needs to be greater than or equal to zero,
and less than thewidth/height of the playfieldminus thewidth/height

of the individual room. Note that each of these conditions is con-
nected with a logical “and”, meaning that all of these constraints
must hold for the overall within-playfield constraint to be satisfied.

Separation constraints ensure that every room does not overlap
another room, and each room maintains a specified separation
distance, sep, from all other rooms. Given two rooms, i and j , there
are 8 possible positions that j can have relative to i (above left,
above center, above right, adjacent left, adjacent right, below left,
below center, below right). However, this can be expressed as room
j is located either above or below or left or right of room i , where
above, below, left, and right are:

above : yr j ≤ yri − heiдhtj − sep

below : yri ≤ yr j − heiдhti − sep

le f t : xr j ≤ xri −widthj − sep

riдht : xri ≤ xr j −widthi − sep

(2)

To specify separation in the form of constraints, it is necessary
to use logical or to connect all of the individual direction constraints
together: above∨below∨le f t∨riдht Filling in the exact constraints,
this takes the form: yr j ≤ yri −heiдhtj −sep∨yri ≤ yr j −heiдhti −
sep ∨ xr j ≤ xri −widthj − sep ∨ xri ≤ xr j −widthi − sep.

These separation constraints need to be established once for
every unique pair of rooms, i, j, i , j, hence for N rooms this
results in N (N − 1)/2 sets of separation constraints.

3.2 Logical Or Creates a Generative Space
It is worth thinking about the implications of the use of logical
or in the placement constraints above. For two rooms, these four
placement constraints (connected by logical or) create four unique
possibilities for their relative placement. In combination with the
playfield constraints, the large number of possible starting positions
for room i , combined with the four possible relative placements for
j, combine to create a very large number of possible placements of
these two rooms. That is, the or’ed together positional constraints
act to define different generative possibilities. As the number of
rooms increases, the number of possible relative placements in-
creases as well, defining an increasingly large generative space
of valid placements. Every time we see a logical or, it defines a
binary choice the constraint solver can make, and hence a different
possible generative outcome.

3.3 Design Constraints
We revisit the two design scenarios from the introduction to high-
light the flexibility of linear constraints for expressing designer
constraints.

Throne room. The designer wishes to have a large throne room
placed towards the middle of the playfield, with an antechamber
immediately below it, and an escape room located near the thrones
at the top. Achieving this goal involves (a) setting a placement
constraint for the throne room, (b) ensuring the antechamber is the
same width as the throne room, (c) constraining the location of the
antechamber relative to the throne room, and (d) constraining the
location of the escape room relative to the throne room. Constraints
(c) and (d) are used in lieu of the basic separation constraints, since



Spatial Layout of Procedural Dungeons Using Linear Constraints and SMT Solvers PCG ’20, September 15–18, 2020, Bugibba, Malta

they provide different kinds of separation. The throne room design
constraints take the form of:

(a) thronex ≥ 0.3playw ∧ thronex ≤ 0.35playw ∧ throney

≥ 0.1playh ∧ throney ≤ 0.25playh
(b) antechamberwidth = thronewidth

(c) throney = antechambery − throneheiдht ∧ thronex (3)
= antechamberx

(d) thronex = escapex − thronewidth ∧ throney = escapey

−0.1throneheiдht

Examples of dungeons generated using these constraints can be
found in Figure 2.

Figure 2: Representative generated throne rooms. The
throne room is the large room in the center, the antecham-
ber is the same width an immediately below. A small escape
room is connected to the upper right of the throne room.
The right figure shows the throne room and control line con-
straints (red lines) active at the same time.

Control Lines. The designer gives a series of (connected) line
segments and wants the dungeon rooms to be placed within a fixed
line width of these control lines. Figure 1 shows an example of
dungeons generated using control lines. These lines are defined by
a start and end point, such as when using a series of mouse clicks
to describe these lines, and hence use the two-point equation for a
line to define our line constraints.

riy ≤ slope ∗ (rix − endx + linewidth) + endy ∧

riy ≥ slope ∗ (rix − endx − linewidth +widthi ) + endy
(4)

For negative slopes we switch ≤ and ≥ comparators. Z3 limits
us to integer slope values when using integer constraints, which
caused floating point slope values to be truncated. This was un-
fortunate since many useful slopes lie between 0 and 1, and these
were truncated to 0. As a workaround, we scaled up just the y di-
mension by a scaling factor of 1000. In this way, a slope that had
been, say, 0.01549 would now be 15 (instead of 0 before scaling),
a close enough approximation. Values are de-scaled before being
displayed or used in-game. We explored an alternative approach
where the numerator and denominator of the slope were used in
the equation instead of a pre-computed slope, but this introduced
a single divide which had the effect of slowing solution times by
several orders of magnitude.

Without further constraints, the lines run across the entire play-
field, and do not stop at the start and end points. We need to add
a constraint preventing values before the start, and after the end.
While we need to constrain both x and y, we only need to con-
strain one variable since the other is constrained via the linear
relationship.

riy ≥ starty ∧ riy ≤ endy − heiдhti (5)

When the line is close to horizontal, the fall of the line over its
length is less than the room height, and hence it is impossible to
place a room. In this situation, we switch to use x-based constraints
instead.

4 EMPIRICAL EVALUATION
To evaluate these ideas, we implemented a dungeon generator in
Python using the Z3 constraint solver. Our dungeon generation
process begins by randomly generating a series of rooms, select-
ing random widths and heights within designer-specified bounds.
These rooms are then placed by expressing the layout constraints
(described above) and then receiving a successful solution from
the constraint solver. This places each room at a specific position.
Finally, we use the approach described in [1] to connect rooms.
First, rooms are connected by computing a Delaunay triangulation
[4] among them, followed by computing a minimum spanning tree
[15] from this graph. Passageways are used to realize the graph
edges, thereby completing the dungeon. Since the focus of this
paper is room layout, we omit the mission generation and deco-
ration phases. We note that [1] randomly adds connections from
the Delaunay triangulation back into the graph constructed by the
minimum spanning tree to increase room connectivity; we omit
this step to emphasize control line following.

We are interested in answering these research questions:

R1. How much time does it take to perform dungeon room
layout?

Since constraint solvers can take varying amounts of time to
compute the solution to a series of equations (or determine they
are unsatisfiable), it is important to know how long the solving
step takes. In general, this increases with the number of constraints,
which increases with the number of rooms. Use of control line
constraints increases the total number of constraints, and hence
might impact solver time. In general, actual solution times are sub-
stantially lower than theoretical maximum times, hence motivating
our empirical approach for characterizing performance.

R2. How uniformly are rooms placed within the playfield?

Since the constraints are defining a generative space, the Z3
solver is effectively sampling from this space when it returns each
individual solution. Ideally this sampling is occurring in a uniform
way, with all solutions equally likely to be returned. If there are
hotspots, designers should be aware of this, potentially adding
constraints to avoid them.

4.1 Layout Time
To explore time required to perform dungeon layout, we collected
data for two main situations: dungeon layout without control line



PCG ’20, September 15–18, 2020, Bugibba, Malta Whitehead

Table 1: Median times (in seconds) for major operations in dungeon layout, along with counts of the number of constraint
clauses

Situation # And Clauses # Or Clauses Setup Solving Delaunay Min. Span Tree Total Time
Standard 10 room 85 180 0.05157 0.01335 0.001437 0.004464 0.07082
Standard 20 room 270 760 0.1812 0.03557 0.002366 0.0006633 0.2198
Standard 30 room 555 1740 0.4094 0.1262 0.003378 0.0007265 0.5397
Five line 10 room 285 230 0.1158 0.02321 0.001661 0.0007692 0.1414
Five line 20 room 670 860 0.3361 0.07462 0.002610 0.0007077 0.4140
Five line 30 room 1155 1890 0.6203 0.4982 0.003599 0.0007789 1.123

constraints (standard), and dungeon layout where five control lines
were present (five line). Representative generated dungeons for
each of these situations are presented in Figures 3 and 4. For the
standard situation, rooms had widths and heights varying from 20-
60 units. For the five line situation, rooms had widths and heights
varying from 10-20 units. The smaller size was chosen to ensure
a 30 room dungeon was feasible. Runs using 10, 20, and 30 rooms
were executed, with a playfield of 400x400 units. In each of the 50
runs, 100 iterations of the same set of room sizes were generated (a
total of 5,000 dungeons generated). New room sizes were generated
at the start of each run.

Times were collected for each of the major steps in dungeon
generation. Experiments were run on a laptop computer with a
Core i7 processor (6 cores) running at 2.2Ghz and 32GB of RAM.
Code was written in Python, and ran in Ubuntu hosted byWindows
Subsystem for Linux (WSL2). Source code and empirical data are
available on GitHub2. Constraint setup occurs once per run, and
encompasses constructing and transmitting all of the constraints
to the Z3 SMT solver. Solving is the time required to solve these
constraints once (i.e., the time required to perform the layout step).
Times required to perform a delaunay triangulation and compute a
minimum spanning tree (the most time consuming steps involved in
determining passageways) are also reported. Since many frequency
distributions are not normal, median values are reported. Table
1 presents timing results, presented in seconds. Figures 5 and 6
presents frequency distributions of solver times (in seconds) for
these situations.

Solving time results increase with the number of rooms, and
hence the number of constraints. Solving times are higher for the
five control line situation, due to the greater number of constraints,
and the more limited set of possible solutions at higher rooms num-
bers. Frequency distributions of solve times for the five-line situa-
tion have increasingly long tails as the number of rooms increases,
a reflection of the difficulty of finding solutions and exploration of
greater parts of the solution space inside the solver.

4.2 Placement Distribution
To explore placement distribution, we collected data from two sim-
ilar situations: a standard layout with no control lines, and the
same five control line situation. As above the standard situation
had rooms with sizes varying from 20-60 units in width and height.
For the five control line situation, rooms varied from 10-30 units

2https://github.com/JimWhiteheadUCSC/smt_dungeon

in width and height. 25 runs of 100 dungeon generations were per-
formed for each situation, except the 30 room control line where
we used 5 runs of 100 generations, due to an average solver time
of 14.43 seconds (this time is greater than those in Fig. 6 due to
the larger room size of 10-30 units vs 10-20 units). Heatmaps were
computed of the area covered by each room, with a grid size of 5
units. If rooms are uniformly spread out across the playfield, each
grid cell should have roughly the same number of rooms covering it
across all runs. Any area that has more/less rooms than typical will
appear as bright/dark spots in the heatmap, and indicate situations
where the constraint solver was unable to uniformly select layouts
from the set of potential solutions. Figures 7 and 8 show heatmaps
for the standard and five control line situations.

For the standard situation with 10 rooms, room placement is
clearly skewed towards the upper left corner. This likely represents
the solver quickly finding solutions in this quadrant, and not seeing
a need to go further to find solutions. For 20 and 30 room layouts, the
placement is far more uniform, with a slight bias towards the upper
left and lower right corners. An interesting cross-hatch artifact
appears in these heatmaps, of unknown cause. Heatmaps for the
five control line situation show a good spread of rooms along the
control line, with a slight bias towards the start of each line segment.
There is a grid artifact where the rooms are preferentially placed
in specific grid locations. This likely represents the fact that room
sizes tend to constrain possible solutions, and especially at high
room counts, most available valid locations along the control lines
need to be used to find a solution.

5 CONCLUSION
We have presented an approach for declaratively specifying dun-
geon layouts, and have used the Z3 SMT solver to generate dun-
geons meeting these specifications. This approach permits design-
ers to work in a declarative style, stating what features they desire
in a level, which the generator will then satisfy if possible. We have
presented two examples of designer constraints, in the form of po-
sitional constraints in the throne room example, and the powerful
technique of using control lines to guide room placement. Exist-
ing dungeon generation approaches lack this degree of designer
control.

SMT solvers are a powerful technique for procedural content
generation. Many level design problems involve the layout of items
within a playfield, subject to various geometric constraints. Indus-
trial strength SMT solvers, such as Z3, make it possible to use
declarative level generation for a wide range of level types. We
have found Z3 to have good performance for level generation tasks



Spatial Layout of Procedural Dungeons Using Linear Constraints and SMT Solvers PCG ’20, September 15–18, 2020, Bugibba, Malta

Figure 3: Representative generated dungeons for standard layout with (left to right) 10/20/30 rooms.

Figure 4: Representative generated dungeons for five control line layout (red lines) with (left to right) 10/20/30 rooms

Figure 5: Frequency distribution of solving times for standard layout with (left to right) 10/20/30 rooms. The x-axis is the
solving time (in seconds), and the y-axis is a count. Blue ticks (bottom) show individual instances and highlight outliers.

Figure 6: Frequency distribution of solving times for five control line layout with (left to right) 10/20/30 rooms. The x-axis is
the solving time (in seconds), and the y-axis is a count. Blue ticks (bottom) show individual instances and highlight outliers.



PCG ’20, September 15–18, 2020, Bugibba, Malta Whitehead

Figure 7: Heatmap of room area coverage for standard layout with (left to right) 10/20/30 rooms

Figure 8: Heatmap of room area coverage for five control line layout with (left to right) 10/20/30 rooms

typical of dungeon crawler type games, and it provides surprisingly
good sampling across the space of possible solutions.

In future work, it would be interesting to take advantage of Z3’s
ability to solve systems comprised of binary and linear constraints
to generate missions and spatial layouts at the same time. Further,
since a major benefit of the constraint-based approach is the ability
to accommodate change, it would be interesting to build a design
tool around this linear constraints approach.

REFERENCES
[1] A Adonaac. 2015. Procedural Dungeon Generation Algorithm.

https://www.gamasutra.com/blogs/AAdonaac/20150903/252889/Procedural_
Dungeon_Generation_Algorithm.php Library Catalog: www.gamasutra.com.

[2] Anthony J. Smith and Joanna J. Bryson. 2014. A Logical Approach to Building
Dungeons: Answer Set Programming for Hierarchical Procedural Content Gen-
eration in Roguelike Games. In Proceedings of the 50th Anniversary Convention of
the AISB.

[3] Antonios Liapis, Giorgios N. Yannakakis, and Julian Togelius. 2013. Sentient
Sketchbook: Computer-Aided Game Level Authoring. In Proceedings of the 8th
International Conference on the Foundations of Digital Games (FDG 2013). Chania,
Crete, Greece.

[4] Franz Aurenhammer, Rolf Klein, and Der-tsai Lee. 2013. Voronoi Diagrams And
Delaunay Triangulations. World Scientific Publishing Company. Google-Books-
ID: cic8DQAAQBAJ.

[5] Alexander Baldwin, Steve Dahlskog, Jose M. Font, and Johan Holmberg. 2017.
Mixed-initiative procedural generation of dungeons using game design patterns.
In 2017 IEEE Conference on Computational Intelligence and Games (CIG). 25–32.
https://doi.org/10.1109/CIG.2017.8080411 ISSN: 2325-4289.

[6] J. Timothy Balint and Rafael Bidarra. 2019. A generalized semantic repre-
sentation for procedural generation of rooms. In Proceedings of the 14th In-
ternational Conference on the Foundations of Digital Games (FDG ’19). Asso-
ciation for Computing Machinery, San Luis Obispo, California, 1–8. https:
//doi.org/10.1145/3337722.3341848

[7] Jessica R. Baron. 2017. Procedural Dungeon Generation Analysis and Adaptation.
In Proceedings of the SouthEast Conference (ACM SE ’17). Association for Comput-
ing Machinery, Kennesaw, GA, USA, 168–171. https://doi.org/10.1145/3077286.
3077566

[8] Bob Nystrom. 2014. Rooms and Mazes: A Procedural Dungeon Generator –
journal.stuffwithstuff.com. http://journal.stuffwithstuff.com/2014/12/21/rooms-
and-mazes/

[9] Carlos Calderon, Marc Cavazza, and Daniel Diaz. 2003. A NewApproach to the In-
teractive Resolution of Configuration Problems in Virtual Environments. In Third
International Symposium on Smart Graphics (SG 2003). Heidelberg, Germany.

[10] Daniël Karavolos, Anders Bouwer, and Rafael Bidarra. 2015. Mixed-Initiative
Design of Game Levels: Integrating Mission and Space into Level Generation.
In Proceedings of the 10th International Conference on the Foundations of Digital
Games (FDG 2015). Asilomar Conference Center, Monterey, California, USA.
http://www.fdg2015.org/papers/fdg2015_paper_25.pdf

[11] Danny Lobos and Dirk Donath. 2010. The problem of space layout in architecture:
A survey and reflections. arquiteturarevista 6, 2 (Dec. 2010), 136–161. https:
//doi.org/10.4013/arq.2010.62.05

[12] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: an efficient SMT solver.
In Proceedings of the Theory and practice of software, 14th international con-
ference on Tools and algorithms for the construction and analysis of systems
(TACAS’08/ETAPS’08). Springer-Verlag, Budapest, Hungary, 337–340.

[13] Joris Dormans and Sander Bakkes. 2011. Generating Missions and Spaces for
Adaptable Play Experiences. IEEE Transactions on Computational Intelligence and
AI in Games 3, 3 (Sept. 2011), 216–228. https://doi.org/10.1109/TCIAIG.2011.
2149523

[14] Evan Hahn, Prosenjit Bose, and Anthony Whitehead. 2006. Persistent Real-
time Building Interior Generation. In Sandbox ’06: Proceedings of the 2006 ACM
SIGGRAPH symposium on Videogames.

[15] R.L. Graham and Pavol Hell. 1985. On the History of the Minimum Spanning
Tree Problem. Annals of the History of Computing 7, 1 (Jan. 1985), 43–57. https:
//doi.org/10.1109/MAHC.1985.10011 Conference Name: Annals of the History of
Computing.

[16] Nathan Hilliard, John Salis, and Hala ELAarag. 2017. Algorithms for procedural
dungeon generation. Journal of Computing Sciences in Colleges 33, 1 (Oct. 2017),
166–174.

https://www.gamasutra.com/blogs/AAdonaac/20150903/252889/Procedural_Dungeon_Generation_Algorithm.php
https://www.gamasutra.com/blogs/AAdonaac/20150903/252889/Procedural_Dungeon_Generation_Algorithm.php
https://doi.org/10.1109/CIG.2017.8080411
https://doi.org/10.1145/3337722.3341848
https://doi.org/10.1145/3337722.3341848
https://doi.org/10.1145/3077286.3077566
https://doi.org/10.1145/3077286.3077566
http://journal.stuffwithstuff.com/2014/12/21/rooms-and-mazes/
http://journal.stuffwithstuff.com/2014/12/21/rooms-and-mazes/
http://www.fdg2015.org/papers/fdg2015_paper_25.pdf
https://doi.org/10.4013/arq.2010.62.05
https://doi.org/10.4013/arq.2010.62.05
https://doi.org/10.1109/TCIAIG.2011.2149523
https://doi.org/10.1109/TCIAIG.2011.2149523
https://doi.org/10.1109/MAHC.1985.10011
https://doi.org/10.1109/MAHC.1985.10011


Spatial Layout of Procedural Dungeons Using Linear Constraints and SMT Solvers PCG ’20, September 15–18, 2020, Bugibba, Malta

[17] Xavier Ho and Marcus Carter. 2019. Roguelike ancestry network visualisa-
tion: insights from the roguelike community. In Proceedings of the 14th In-
ternational Conference on the Foundations of Digital Games (FDG ’19). Asso-
ciation for Computing Machinery, San Luis Obispo, California, 1–9. https:
//doi.org/10.1145/3337722.3337761

[18] Hoda Homayouni. 2006. A Survey of Computational Approaches to
Space Layout Planning (1965-2000). Technical Report. University of
Washington, Department of Architecture and Urban Planning. https:
//www.semanticscholar.org/paper/A-Survey-of-Computational-Approaches-
to-Space-Homayouni/3a4cda7185ff22647c8b895117f12c625dae4beb

[19] Ruizhen Hu, Zeyu Huang, Yuhan Tang, Oliver van Kaick, Hao Zhang, and Hui
Huang. 2020. Graph2Plan: Learning Floorplan Generation from Layout Graphs.
(April 2020). http://arxiv.org/abs/2004.13204 arXiv: 2004.13204.

[20] Jess Martin. 2006. Procedural House Generation: A method for dynamically
generating floor plans. In Proceedings of the Symposium on Interactive Computer
Graphics and Games.

[21] Kai Wang, Yu-An Lin, Ben Weissmann, Manolis Savva, Angel X. Chang, and
Daniel Ritchie. 2019. PlanIT: Planning and Instantiating Indoor Scenes with
Relation Graph and Spatial Prior Networks. In SIGGRAPH.

[22] Ken Xu, James Stewart, and Eugene Fiume. 2002. Constraint-based Automatic
Placement for Scene Composition. Grahpics Interface 2 (May 2002), 25–34.

[23] Becky Lavender and Tommy Thompson. 2017. A Generative Grammar Approach
for Action-Adventure Map Generation in The Legend of Zelda. University of
Sheffield. http://www.t2thompson.com/wp-content/uploads/2016/03/zelda-aisb-
2016.pdf

[24] Antonios Liapis, Christoffer Holmgård, Georgios N. Yannakakis, and Julian To-
gelius. 2015. Procedural Personas as Critics for Dungeon Generation. In Applica-
tions of Evolutionary Computation (Lecture Notes in Computer Science), Antonio M.
Mora and Giovanni Squillero (Eds.). Springer International Publishing, Cham,
331–343. https://doi.org/10.1007/978-3-319-16549-3_27

[25] Nathan Williams. 2014. An Investigation in Techniques used to Procedurally
Generate Dungeon Structures. Technical Report. http://www.nathanmwilliams.
com/files/AnInvestigationIntoDungeonGeneration.pdf

[26] Charles E. Pfefferkorn. 1975. A heuristic problem solving design system for
equipment or furniture layouts. Commun. ACM 18, 5 (May 1975), 286–297.
https://doi.org/10.1145/360762.360817

[27] Riccardo Lopes, Tim Tutenel, Ruben M. Smelik, Klaas Jan de Kraker, and Rafael
Bidarra. 2010. A constrained growth method for procedural floor plan generation.
In Proc. 11th International Conference on Intelligent Games and Simulation (GAME-
ON 2010). Leicester, United Kingdom, 13–20.

[28] Timothy Roden and Ian Parberry. 2004. From Artistry to Automation: A Struc-
tured Methodology for Procedural Content Creation. In Entertainment Comput-
ing – ICEC 2004 (Lecture Notes in Computer Science), Matthias Rauterberg (Ed.).

Springer, Berlin, Heidelberg, 151–156. https://doi.org/10.1007/978-3-540-28643-
1_19

[29] Roland van der Linden, Ricardo Lopes, and Rafael Bidarra. 2013. Designing
Procedurally Generated Levels. In Proceedings of the Workshop on AI in the Game
Design Process (AIIDE 2013).

[30] Noor Shaker, Antonios Liapis, Julian Togelius, Ricardo Lopes, and Rafael Bidarra.
2016. Constructive generation methods for dungeons and levels. In Procedural
Content Generation in Games, Noor Shaker, Julian Togelius, and Mark J. Nelson
(Eds.). Springer International Publishing, Cham, 31–55. https://doi.org/10.1007/
978-3-319-42716-4_3

[31] Adam M. Smith and Michael Mateas. 2011. Answer Set Programming for
Procedural Content Generation: A Design Space Approach. IEEE Transac-
tions on Computational Intelligence and AI in Games 3, 3 (Sept. 2011), 187–200.
https://doi.org/10.1109/TCIAIG.2011.2158545

[32] Thomas Smith, Julian Padget, and Andrew Vidler. 2018. Graph-based generation
of action-adventure dungeon levels using answer set programming. In Proceedings
of the 13th International Conference on the Foundations of Digital Games (FDG ’18).
Association for Computing Machinery, Malmö, Sweden, 1–10. https://doi.org/
10.1145/3235765.3235817

[33] Stanislaus Chaillou. 2019. AI+ Architecture: Towards a New Approach. Ph.D.
Dissertation. Harvard University, Graduate School of Design. https://www.
academia.edu/39599650/AI_Architecture_Towards_a_New_Approach

[34] Petar Borisov Stoykov. 2017. Rectangle Packing in Practice. Master’s thesis. TU
Eindhoven.

[35] Tim Tutenel, Rafael Bidarra, Ruben M. Smelik, and Klas Jan de Kraker. 2009.
Rule-based layout solving and its application to procedural interior generation.
In CASA Workshop on 3D Advanced Media in Gaming and Simulation.

[36] Tim Tutenel, Rafael Bidarra, Ruben M. Smelik, and Klaas Jan De Kraker. 2008.
The role of semantics in games and simulations. Computers in Entertainment 6, 4
(Dec. 2008), 57:1–57:35. https://doi.org/10.1145/1461999.1462009

[37] U. Flemming, R. Coyne, T. Glavin, and M. Rychener. 1988. A Generative Expert
System for the Design of Building Layouts. Technical Report EDRC-48-08-88.
Carnegie Mellon University.

[38] Valtchan Valtchanov and Joseph Alexander Brown. 2012. Evolving dungeon
crawler levels with relative placement. In Proceedings of the Fifth International C*
Conference on Computer Science and Software Engineering (C3S2E ’12). Association
for Computing Machinery, Montreal, Quebec, Canada, 27–35. https://doi.org/10.
1145/2347583.2347587

[39] Roland van der Linden, Ricardo Lopes, and Rafael Bidarra. 2014. Procedural
Generation of Dungeons. IEEE Transactions on Computational Intelligence and AI
in Games 6, 1 (March 2014), 78–89. https://doi.org/10.1109/TCIAIG.2013.2290371

[40] Véronique Gaildrat. 2007. Declarative modelling of virtual environments,
overview of issues and applications. In International Conference on Computer
Graphics and Artificial Intelligence (3IA 2007). Athens, Greece.

https://doi.org/10.1145/3337722.3337761
https://doi.org/10.1145/3337722.3337761
https://www.semanticscholar.org/paper/A-Survey-of-Computational-Approaches-to-Space-Homayouni/3a4cda7185ff22647c8b895117f12c625dae4beb
https://www.semanticscholar.org/paper/A-Survey-of-Computational-Approaches-to-Space-Homayouni/3a4cda7185ff22647c8b895117f12c625dae4beb
https://www.semanticscholar.org/paper/A-Survey-of-Computational-Approaches-to-Space-Homayouni/3a4cda7185ff22647c8b895117f12c625dae4beb
http://arxiv.org/abs/2004.13204
http://www.t2thompson.com/wp-content/uploads/2016/03/zelda-aisb-2016.pdf
http://www.t2thompson.com/wp-content/uploads/2016/03/zelda-aisb-2016.pdf
https://doi.org/10.1007/978-3-319-16549-3_27
http://www.nathanmwilliams.com/files/AnInvestigationIntoDungeonGeneration.pdf
http://www.nathanmwilliams.com/files/AnInvestigationIntoDungeonGeneration.pdf
https://doi.org/10.1145/360762.360817
https://doi.org/10.1007/978-3-540-28643-1_19
https://doi.org/10.1007/978-3-540-28643-1_19
https://doi.org/10.1007/978-3-319-42716-4_3
https://doi.org/10.1007/978-3-319-42716-4_3
https://doi.org/10.1109/TCIAIG.2011.2158545
https://doi.org/10.1145/3235765.3235817
https://doi.org/10.1145/3235765.3235817
https://www.academia.edu/39599650/AI_Architecture_Towards_a_New_Approach
https://www.academia.edu/39599650/AI_Architecture_Towards_a_New_Approach
https://doi.org/10.1145/1461999.1462009
https://doi.org/10.1145/2347583.2347587
https://doi.org/10.1145/2347583.2347587
https://doi.org/10.1109/TCIAIG.2013.2290371

	Abstract
	1 Introduction
	2 Related Work
	2.1 Dungeon Room Layout
	2.2 Similar Layout Problems

	3 Dungeon Room Layout Using Linear Constraints
	3.1 Basic Constraints
	3.2 Logical Or Creates a Generative Space
	3.3 Design Constraints

	4 Empirical Evaluation
	4.1 Layout Time
	4.2 Placement Distribution

	5 Conclusion
	References

