
Exploring the Possibility Space of 1 Billion Spells
Oliver Withington

Queen Mary University of London
London, United Kingdom
o.withington@qmul.ac.uk

Abstract
In this short paper we introduce the first version of a ‘spell simula-
tor’ for 1 Billion Spells, an in development action game, and explore
the simulator’s utility for conducting large scale exploration and
evaluation of that game’s spell creation system. Using this simu-
lator we conduct initial experiments to explore specific developer
concerns about the game which would be challenging to explore
with conventional playtesting. We argue that our initial exploration
demonstrates the potential of this approach in evaluating content
generation systems for games that have large player explorable
possibility spaces.

CCS Concepts
• Applied computing → Media arts; • Human-centered com-
puting → Human computer interaction (HCI).

Keywords
procedural content generation, evaluation, games
ACM Reference Format:
Oliver Withington. 2025. Exploring the Possibility Space of 1 Billion Spells.
In International Conference on the Foundations of Digital Games (FDG ’25),
April 15–18, 2025, Graz, Austria. ACM, New York, NY, USA, 4 pages. https:
//doi.org/10.1145/3723498.3723783

1 Introduction
Within the research community concerned with procedural content
generation (PCG), there is a consistent preoccupation with what
Togelius and Yanakakis term ‘The Gap’ [12] - the disconnect in
practice and priorities between researchers and commercial game
developers. While there have been efforts to reduce it [3], Lai et al
argued in 2020 that it was larger than ever [4]. We argue that an
avenue for bridging this gap is to center the goals of a real world
game developer to see how effective PCG research techniques are
in addressing these goals.

The goal for this work is to do just that, and bring research tech-
niques and practice directly to an in development commercial game:
1 Billion Spells (hereafter referred to as 1BS). 1BS is an action game
being developed by Icedrop Games (https://icedropgames.com/),
with a node based spell creation system as its central mechanic.
This system supports the creation of large numbers of unique spells,
which the developers hope will produce an experience that players

This work is licensed under a Creative Commons Attribution International
4.0 License.

FDG ’25, Graz, Austria
© 2025 Copyright held by the owner/author(s).
ACM ISBN /25/04
https://doi.org/10.1145/3723498.3723783

Figure 1: Screenshot of 1 Billion Spells, showing the player
character evading a hoard of enemies

will want to replay to explore alternative options within the spell
possibility space. However the size of this possibility space makes
the game hard to test and balance.

In this paper we introduce a spell simulator for mapping this pos-
sibility space using PCG research techniques, including a generate-
and-test genetic search algorithm for generating spells, and Expres-
sive Range Analysis (ERA) [7]. The goal is to be able to produce
data to address developer questions and concerns about the spell
making system. The primary contribution of this work is the initial
exploration of whether and how these techniques are practical for
producing useful information for game developers.

2 Background
In this sectionwe introduce and discuss the context needed to under-
stand the work done in this paper, both on the pre-existing research
that informs this, but also on the game that we are analysing.

2.1 PCG Evaluation
While PCG for games has been a popular research domain for al-
most two decades now, with hundreds of new works each year,
the evaluation of new research has never been successfully stan-
dardised. Other AI fields have made extensive use of standardised
benchmarking, such as the EMNIST dataset for image recognition
[1], and have arguably benefited significantly from being able to
directly compare novel systems to prior ones (though we should
note there has been significant recent pushback against the value
of benchmarking in other AI fields such as LLM research [6]).

It has often been argued that PCG as a field needs something
similar [2, 5, 9], but no consensus has emerged. A 2024 survey of
evaluation practice within PCG for game level generation rein-
forced this perception by showing both the diversity of techniques
being used and the lack of reference to prior work in new ones

https://orcid.org/0000-0002-7007-5193
https://doi.org/10.1145/3723498.3723783
https://doi.org/10.1145/3723498.3723783
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3723498.3723783


FDG ’25, April 15–18, 2025, Graz, Austria Oliver Withington

[11]. However, this is in many ways unsurprising. As argued by
Whitehead [10] PCG for games is an aggregate field which draws on
fields as disparate as art, engineering and computer science. Finding
evaluative practice which can unify the needs of these different
disciplines is obviously challenging, and maybe infeasible.

However, a potential solution is to instead base PCG design and
evaluation in the needs and concerns of developers [4], an approach
that this paper aims to be an early exploration of.

2.2 Expressive Range Analysis
Expressive Range Analysis (ERA) is one of the dominant techniques
used for evaluating Procedural Content Generation (PCG) systems
[11]. Introduced by Smith and Whitehead in 2010 [7] its basic oper-
ation is appealingly simple. First a pair of quantifiable Behavioural
Characteristics (BCs) are chosen which describe the artefacts pro-
duced by the PCG system. These BCs are then calculated for a large
generated sample of content and then this set of BC pairs can then
be visualised on a 2D plot. These can then be used to interpret
what types of content are likely and unlikely to be produced by a
given PCG system in terms of these BC values. While ERA has been
iterated upon many times in the intervening 15 years [2, 8] it is
commonly used in its original form to describe the output diversity
of PCG systems.

2.3 1 Billion Spells
1BS in its current form is a 2D action game in which a trainee
wizard is tasked with evading and dispatching waves of enemies. A
key game mechanic is spell making. It uses a click and drag node
based system to allow players to create their own unique spells
(See Figure 2 for a screenshot). These nodes are chosen at the end
of each enemy wave by the player from a randomly selected set.

In the current version of the game there are over 50 node types
and in a given playthrough of the game the player can choose a
dozen or more from this pool. This means there is a huge possibility
space of spells that could be produced, with a potentially large
amount of variance in the viability of the spells within the possibility
space. For 1BS’ developers, trying to get a high level view of this
space to know whether their design goals are being met is a serious
challenge.

The high level designer goals that we look to explore with the
initial experiments presented in this paper relate to both game
balance and diversity of play. They are as follows:

(1) For all nodes to be viable options
(2) For it to be not overly easy to make bad spells to avoid new

player frustration
(3) For the system to not be biased towards linear chains of

nodes

3 Spell Simulator System
The goal for this system is to be able to gain useful insights into
the possibility space of makeable spells in a way that supports
the game designers in deciding what changes need to be made
to the underlying spell system. To do this we developed a ‘spell
simulator’, a lightweight Python system which allows for the gen-
eration of hundreds of thousands of spells with limited time and

Figure 2: Screenshot showing the in game node based spell
creation screen. Energy nodes are colored in blue, damage
nodes in orange and modification nodes in grey & purple

computing resources required. Below we describe the spell simula-
tor system at a high level to support an understanding of this work,
though we elide many of the specifics and details of how it operates
for reasons of space and relevance. For more specifics on how it
works please contact the authors or consult the Github repository
at github.com/KrellFace/1BilSpells_Sim.

3.1 Abstractions
As this simulator is a completely separate system to the actual game
engine it has no model of the game world or the enemies present,
and there are abstractions that we make about spells when we are
simulating them. The primary ones are that we assume:

• Every damage instance will connect with at least one enemy.
• Every energy source will trigger at its maximum refire rate.

However in terms of the nodes available, how they can connect
with each other and the effects they have in game; the simulator
aims to closely adhere to the in-game reality.

3.2 Spell Modelling
Spells are modelled as networks of connected nodes, similar to
their in-game representation in the spell maker menu (See Figure 2).
All nodes are partially defined by the maximum number of parent
and child nodes they can have, but there are also three main node
subtypes which have their own important features:

• Energy Nodes - Which produce energy pulses. These are
primarily defined by the frequency with which they produce
energy pulses and the size of these pulses, as well as whether
these pulses are triggered directly by the player or triggered
by an in-game event such as an enemy’s death

• Damage Nodes - Which convert energy pulses into damage
effects. These are primarily defined by their conversion rate
of energy into damage, and the size of the area of effect
produced.

• Modification Nodes - Which change the properties incom-
ing energy pulses and all child nodes that receive pulses
from it, such as adding movement to projectiles

Time can then be simulated by generating energy pulses at a
rate and frequency dictated by their values, represented as simple
data tuples, from energy nodes and then passing them down to
child nodes. On arrival at a damage node the information in the
energy pulse data packet is used to generate information about the
in game effect.



Exploring the Possibility Space of 1 Billion Spells FDG ’25, April 15–18, 2025, Graz, Austria

3.3 Spell Generation
The current version of the simulator uses a Generate and Test
system to make spells. The steps involved are:

1: Select node pool P for next spell
2: Copy P as P‘
3: Select node X from P‘
4: Attempt to add node X to spell. Remove from P‘ if successful
5: Repeat steps 3 and 4 until P‘ is empty or failed attempts

reaches threshold
6: Calculate quality heuristic for spell. If higher than current

best for P‘, store spell
7: Repeat steps 2 to 6 a fixed number times to find the best spell

for pool P
8: Repeat Steps 1 to 7 until the desired number of spells are

generated

4 Experiments and Initial Results
Here we present the initial experimentation and results using this
system, primarily to illustrate the early use cases of the system, as
well as to inform discussion of its limitations.

4.1 Spell Features Calculated
The features we calculated for each generated spell are:

• 1DPS - The theoretical maximum damage that could be done
to a single enemy unit per second.

• Linearity - Heuristic for the amount of branching within
a spells node web. Calculated by dividing the length of the
longest parent-> child chain by the number of unique nodes.

4.2 Spell Generation Parameters
For our spell set to evaluate we generated 100,000 individual spells,
with 1DPS as the quality heuristic for deciding which spell to store.
A pool of 9 nodes was selected for each spell, evenly selected from
Energy, Modification and Damage nodes. The system was given 20
attempts to generate the spell with the highest 1DPS for each pool.

Each spell was simulated for 30 seconds to extract information
about the damage it could do in this time period. The spell gen-
eration and evaluation process took 45 minutes in total on a Dell
laptop with an i5-10310U CPU with 16.0 GB of RAM.

As the current system cannot guarantee that all nodes will be
placed in the final spell, we then filtered this set of 100,000 spells
down to only spells that used the full 9 nodes made available to
them to make the later analysis of them fairer. This left us with a
set of 1,855 spells to analyse.

4.3 Analysis Conducted
The first round of analysis we conducted was looking at the corre-
lation between the appearance of individual nodes within a spell
and its 1DPS. To do this every spell was assigned a binary flag of
0 or 1 for every node type, where 1 indicated its presence in the
spell. We then evaluated the Pearson correlation coefficient for the
correlation between the values for each node type and 1DPS. This
gives us a value between -1 and 1 with higher values indicating a
stronger relationship between that node’s presence in a spell and
its damage (Table 1).

Node Pearson (3dp)

Highest
WandCastNorm 0.387
ProjectileWithOutput 0.373
OnDashStart 0.221

Lowest
CrystalNode -0.200
OnManaCollect -0.214
OnHitNode -0.224

Table 1: Table showing the three nodes most and least corre-
lated with 1DPS

Figure 3: ERA plot of linearity against 1DPS

Figure 4: Histogram showing the distribution of 1DPS values

We conducted ERA on the pairing between spell 1DPS and Lin-
earity to illuminate the distribution of the two values (Figure 3).
We also calculated the Pearson correlation coefficient between the
two to explore the 1BS’ developers’ concerns that linearity was
correlated with spell power.

5 Discussion
Though it is early in the spell simulator’s development, the insights
that can be drawn from it are already interesting. If we look at Table
1 the level of disparity between the strongest and weakest nodes
in this version of the game is interesting, and a potential cause



FDG ’25, April 15–18, 2025, Graz, Austria Oliver Withington

for concern for the developers of 1BilSpells for whom balance is a
priority. The two strongest nodes are significantly stronger than
all others, and vastly more so than the bottom of the scale.

The spread of 1DPS (Figure 4) was also informative, showing
heavy clustering around 20 to 40 1DPS. It also shows that it is easy
to make a spell that produces less 1DPS. This is a cause for concern
as 1BS’ developers wanted to limit the availability of underpowered
spells and for reference the basic spell that every player starts with
already produces 20 1DPS. The system also produces large numbers
of spells that produce 0 or close to 0 damage, but this represents a
limitation of our spell generator, not of the spell system itself, as
we discuss further shortly.

On the correlation between spell potency and the spells linearity
we were able to somewhat allay the developers concerns as we
found a negative correlation between linearity and 1DPS of -0.178.
However, the ERA plot in Figure 3 does show a potentially troubling
clustering, indicating that while complete linearity is not optimal,
there is a more optimal linearity to aim for which could indicate a
lack of balance and diversity in optimal strategies.

On the overall practicality of the approach, 1BS’s developers
were surprised at the speed with which this analysis could be done
and optimistic about its potential utility. The simulator and this
analysis were completed in approximately 120 hours by a single
developer. Much of this time was spent on comprehending the
existing codebase for 1BS which was not built to support this kind
of analysis. Planning for this kind of evaluation from the start
would significantly accelerate this kind of approach. Both sides
of this project, researchers and developers, felt the approach was
promising but that more work and analysis is required to know
how valuable it would be as part of the game’s production.

5.1 Limitations
A limitation with this system is the simplifications and abstractions,
the biggest of which being the assumption that all projectiles will
hit a target. This is an issue, as the downside for many nodes which
their strengths are meant to offset is reducing your odds of being
able to hit the enemies, such as the 45°node which randomly per-
turbs the launch direction of projectiles in exchange for a power
boost.

There are also the issues with the spell generator. Our generate-
and-test implementation which creates spells purely stochastically
does not necessarily correlate with the decisions a human player
would make. Whether it’s generating spells that produce no damage
by including no damage nodes, or making decisions like splitting
the output of an energy node and then only utilising one of the
split outputs, the system often makes spells that no human with
understanding of 1BS ever would. This could be partially addressed
by addingmore constraints to the generative process, but this would
have tradeoffs in maintainability.

6 Future Work
We have many ideas for how to improve the system in future, in-
formed first and foremost by the needs and interests of the 1BilSpells
development team. We aim to expand the modeling of spells by
supporting the calculation features like spell range and the change
of spells to connect.

The most important though, is confirming with 1BS’s developers
that the insights produced by this system are useful and informative.
Ideally this will take the form of a qualitative follow up study on
the insights from the simulator and their utility in supporting 1BS’
development.

7 Conclusion
In this paper we introduced a spell simulator system for exploring
the spell design space of the upcoming action game, 1 Billion Spells.
We introduced the goals that the game’s designers have for the
spell making system, and how we translated these into forms of
evaluation the simulator could conduct. While this system has
significant limitations, it produces insights which would be hard to
get through conventional play-testing.

Acknowledgments
This work was supported by the EPSRC Centre for Doctoral Train-
ing in Intelligent Games&Games Intelligence (IGGI) [EP/S022325/1].
We are also grateful for the helpful and informative feedback we
received from our reviewers on the initial version of this work.

References
[1] Gregory Cohen, Saeed Afshar, Jonathan Tapson, and André van Schaik. 2017.

EMNIST: an extension of MNIST to handwritten letters. (2017). doi:10.48550/
ARXIV.1702.05373 Publisher: arXiv Version Number: 2.

[2] Michael Cook, Jeremy Gow, Gillian Smith, and Simon Colton. 2021. Danesh:
Interactive Tools For Understanding Procedural Content Generators. IEEE Trans-
actions on Games (2021). https://ieeexplore.ieee.org/document/9426419

[3] Matthew Guzdial, Nicholas Liao, Jonathan Chen, Shao-Yu Chen, Shukan Shah,
Vishwa Shah, Joshua Reno, Gillian Smith, and Mark O. Riedl. 2019. Friend,
Collaborator, Student, Manager: How Design of an AI-Driven Game Level Editor
Affects Creators. In Proceedings of the 2019 CHI Conference on Human Factors
in Computing Systems. ACM, Glasgow Scotland Uk, 1–13. doi:10.1145/3290605.
3300854

[4] Gorm Lai, William Latham, and Frederic Fol Leymarie. 2020. Towards Friendly
Mixed Initiative Procedural Content Generation: Three Pillars of Industry. In
International Conference on the Foundations of Digital Games. ACM, Bugibba
Malta, 1–4. doi:10.1145/3402942.3402946

[5] Antonios Liapis. 2020. 10 Years of the PCG workshop: Past and Future Trends.
In International Conference on the Foundations of Digital Games. ACM, Bugibba
Malta, 1–10. doi:10.1145/3402942.3409598

[6] Timothy R. McIntosh, Teo Susnjak, Nalin Arachchilage, Tong Liu, Paul Watters,
and Malka N. Halgamuge. 2024. Inadequacies of Large Language Model Bench-
marks in the Era of Generative Artificial Intelligence. doi:10.48550/ARXIV.2402.
09880 Version Number: 2.

[7] Gillian Smith and Jim Whitehead. 2010. Analyzing the expressive range of a level
generator. In Proceedings of the 2010 Workshop on Procedural Content Generation
in Games - PCGames ’10. ACM Press, Monterey, California, 1–7. doi:10.1145/
1814256.1814260

[8] Adam Summerville. 2018. Expanding Expressive Range: Evaluation Methodolo-
gies for Procedural Content Generation. In Fourteenth Artificial Intelligence and
Interactive Digital Entertainment Conference. https://www.aaai.org/ocs/index.
php/AIIDE/AIIDE18/paper/view/18085

[9] Julian Togelius, Georgios N. Yannakakis, Kenneth O. Stanley, and Cameron
Browne. 2011. Search-Based Procedural Content Generation: A Taxonomy and
Survey. IEEE Transactions on Computational Intelligence and AI in Games 3, 3
(2011), 172–186. doi:10.1109/TCIAIG.2011.2148116

[10] Jim Whitehead. 2017. Art and science of engineered design: what kind of disci-
pline is PCG?. In Proceedings of the 12th International Conference on the Founda-
tions of Digital Games. ACM, Hyannis Massachusetts, 1–3. doi:10.1145/3102071.
3110571

[11] Oliver Withington, Michael Cook, and Laurissa Tokarchuk. 2024. On the Evalua-
tion of Procedural Level Generation Systems. In Proceedings of the 19th Interna-
tional Conference on the Foundations of Digital Games. ACM, Worcester MA USA,
1–10. doi:10.1145/3649921.3650016

[12] Georgios N. Yannakakis and Julian Togelius. 2018. Artificial Intelligence and
Games (1st ed. 2018 ed.). Springer International Publishing : Imprint: Springer,
Cham. doi:10.1007/978-3-319-63519-4

https://doi.org/10.48550/ARXIV.1702.05373
https://doi.org/10.48550/ARXIV.1702.05373
https://ieeexplore.ieee.org/document/9426419
https://doi.org/10.1145/3290605.3300854
https://doi.org/10.1145/3290605.3300854
https://doi.org/10.1145/3402942.3402946
https://doi.org/10.1145/3402942.3409598
https://doi.org/10.48550/ARXIV.2402.09880
https://doi.org/10.48550/ARXIV.2402.09880
https://doi.org/10.1145/1814256.1814260
https://doi.org/10.1145/1814256.1814260
https://www.aaai.org/ocs/index.php/AIIDE/AIIDE18/paper/view/18085
https://www.aaai.org/ocs/index.php/AIIDE/AIIDE18/paper/view/18085
https://doi.org/10.1109/TCIAIG.2011.2148116
https://doi.org/10.1145/3102071.3110571
https://doi.org/10.1145/3102071.3110571
https://doi.org/10.1145/3649921.3650016
https://doi.org/10.1007/978-3-319-63519-4

	Abstract
	1 Introduction
	2 Background
	2.1 PCG Evaluation
	2.2 Expressive Range Analysis
	2.3 1 Billion Spells

	3 Spell Simulator System
	3.1 Abstractions
	3.2 Spell Modelling
	3.3 Spell Generation

	4 Experiments and Initial Results
	4.1 Spell Features Calculated
	4.2 Spell Generation Parameters
	4.3 Analysis Conducted

	5 Discussion
	5.1 Limitations

	6 Future Work
	7 Conclusion
	Acknowledgments
	References

