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ABSTRACT
Co-creative Procedural Content Generation via Machine Learning
(PCGML) refers to systems where a PCGML agent and a human
work together to produce output content. One of the limitations of
co-creative PCGML is that it requires co-creative training data for a
PCGML agent to learn to interact with humans. However, acquiring
this data is a difficult and time-consuming process. In this work, we
propose approximating human-AI interaction data and employing
transfer learning to adapt learned co-creative knowledge from one
game to a different game. We explore this approach for co-creative
Zelda dungeon room generation.
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1 INTRODUCTION
Procedural Content Generation via Machine Learning (PCGML)
refers to approaches that employ ML to learn a generative model
from existing game content. PCGML can be applied to co-creative
design, where an artificially intelligent (AI) agent collaborates with
a human on some game design task. A significant amount of prior
PCGML co-creative work has been applied to Super Mario Bros.
(SMB) [7, 14]. This is in part due to SMB’s popularity. For example,
in one study, a large portion of the participants (62%) had previously
designed a SMB level [7]. This is likely due to the Mario Maker
series, a Mario level design tool/game. The interactions between
the study participants and the AI agents from this study were used
to train a new AI agent [6], which outperformed the original AI
agents from the first study. This would seem to suggest a general
process for producing high-quality co-creative PCGML systems:
creating a tool with some initial PCGML agents, running a user
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study, and then using the data from that study to train a new agent.
However, running user subject studies for every game would be
costly, and it would be difficult to find a user base with relevant
design experience for every game since most games do not have
their own Game Name Maker level design tool/game. Therefore,
we need a way to develop high quality co-creative agents without
requiring game-specific user studies.

Co-creative PCGML agents can be categorized into three groups
based on their training data type: hand-authored data [16], non-
interactive or existing game data [14], and interaction data [6].
Although it is possible to train agents on hand-authored or non-
interaction data, evidence suggests training on human interaction
data leads to models with a greater positive impact on user experi-
ence during co-creative interaction [6]. However, as stated above,
collecting training data for any desired target game domain is non-
trivial. One alternative would be to consider reusing the machine
learned knowledge from one source game domain for a different
target game domain.

Transfer learning is a machine learning methodology focused on
transferring knowledge between problem domains. We could poten-
tially apply transfer learning to adapt machine learned knowledge
derived from interaction data for one game to approximate such
knowledge for a different game. However, we would need some
interaction data or an approximation of interaction data for the
different, target game in order to guide the transfer. We hypothesize
that we can usefully transfer machine learned knowledge from a
source game model to a target game model. If we are able to transfer
machine learned knowledge from interaction data between game
domains we open up the possibility of producing co-creative Ml
agents for any game.

In this paper, we present an initial exploration of the application
of transfer learning for co-creative PCGML agents. To solve the
problem of requiring some interaction data in the target domain we
propose three methods to approximate interaction data from non-
interaction data. Given a source game domain model trained on
interaction data and non-interactive knowledge for a target game
domain, we demonstrate that by finetuning the source domain
model, it is possible to positively inherit some knowledge. We
evaluate this approach by comparing this transfer learning-based
model to models trained from scratch on the target domain data.

We require a source agent from one game domain and a target
agent from a distinct game domain to apply transfer learning. We
employ theDeep Reinforcement Learning (RL) agent from theMorai
Maker tool [6] as our source agent, as it remains the only example of
a co-creative PCGML agent trained on human interaction data. For
a target game domain we chose Zelda dungeon room generation,
due to the differences between Mario levels and Zelda dungeon
rooms. We hypothesized that if we could find any evidence of
positive transfer between these very different domains, then that
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would indicate that this could be a general approach to producing
co-creative PCGML agents. By positive transfer, we mean that our
transfer approach is able to transfer metaknowledge of interactively
working with a human user. Ideally, when working with a human
user in a turn-based fashion, an agent shouldn’t make too many or
too few additions, as the former cuts off the ability of the human
user to impact the results and the latter makes the agent’s presence
unnecessary. Thus, if we can find any evidence of this kind of
behaviour from transferring the knowledge from the Morai Maker
RL agent to a Zelda room design agent, then this would support
our hypothesis.

The remainder of this paper is structured as follows. Section
2 walks through existing approaches and compares them to our
approach. Section 3 gives an overview of the process needed to
apply this approach. Section 4 describes the evaluation methods,
experiments comparing the transfer learning-based model to mod-
els trained from scratch. Section 5 gives the results, and Section 6
outlines a number of ideas for further improvements.

2 RELATEDWORK
In this section we cover related prior work: examples of prior co-
creative systems for dungeon design, autonomous dungeon gen-
eration, and Reinforcement Learning (RL) for Procedural Content
Generation (PCG).

There has been a considerable amount of work in co-creative
or mixed-initiative PCG [10]. However, there have been relatively
few papers on co-creative or mixed-initiative systems for dungeon
design, with much of the focus on co-creative systems for 2D plat-
former level design [6]. Alberto et al. [3] introduced their “Evo-
lutionary Dungeon Designer”, using a search-based approach to
produce Zelda-like dungeons. We employ an ML-based approach
instead of a search-based one. Schrum et al. [14] use evolutionary
search to explore the learned, latent vector of a Generative Ad-
versarial Network (GAN) trained on Zelda dungeon rooms. Their
approach allowed individuals to explore a latent space of whole
Zelda dungeon rooms, whereas our method allows for turn-based,
iterative Zelda dungeon room construction. Depending on how
one defines the terms, one can consider the Schrum et al. system
“mixed initiative” since there is relatively little to no collaboration
between the human and AI, whereas our system can be considered
“co-creative” as the human and AI have more equivalent ability to
impacting the output content. Guzdial et al. [6] trained their agent
on interactive Super Mario Bros. level data collected in an earlier
user study [7]. We use their model as the source model for our
transfer learning approach.

Autonomous dungeon generation has seen a relatively large
amount of prior work [21], in comparison to co-creative dungeon
generation. However, there have been relatively fewer PCGML dun-
geon generation systems. Summerville et al. used Bayes Networks
to capture the distributional information of Zelda level topology
[18], however this work did not generate Zelda dungeon rooms.
Summerville et al. used Principal Component Analysis to extract
features from two Zelda rooms, then interpolated between them to
produce new rooms [17]. Along these lines, Gutierrez et al. trained
a Generative Adversarial Network to generate Zelda rooms [5]. All
of these approaches could be incorporated into tools to help human
users design Zelda dungeons, however they would not allow for the
interactive design process of our approach without modification.

PCG via reinforcement learning (PCGRL) has gained academic
attention recently [9], however it remains under-explored. Delarosa
et al. employed RL agents to give suggestions to human users design-
ing Sokoban levels [4]. We are also interested in mixed-initiative
PCGRL, but using a different interactive framework [8], and em-
ploying transfer learning. A final version of our system would
learn while interacting with a human as the source model did [6],
whereas the agents from the RL Brush tool of Delarosa et al. were
all pretrained. Thue et al. proposed a Procedural Game Adaptation
framework that employed RL, that automatically changed the dy-
namics of a video game during end-user play [20]. This agent can
be viewed as designing the final experience with the player, but the
authors do not situate it as a mixed-initiative process or tool. Nam
et al. used PCGRL to generate stages in a turn-based Role Playing
Game (RPG) [12]. These and other examples of PCGRL train in
hand-authored environments, whereas we attempt to transfer a
trained source PCGRL agent’s knowledge using existing data.

There has also been work on domain adaptation in games [15].
Snodgrass et al. presented a method of tile-mapping the training
data of a source domain to create training data for a target domain.
While utilizing this method could be an approach to transform the
interaction data collected from a source game domain to a target
game domain, this method only works with game domains with a
similar design or genre. Our approach aims to transfer interaction
knowledge across various game domains and is not limited by the
design language of a domain.

Our system employs the same interactive framework as Guzdial
et al.’s “Morai Maker”, a turn-based interaction [6, 8]. Many other
co-creative or mixed-initiative approaches have instead employed
suggestion-based approaches, where a pre-trained or non-ML agent
presents variations on existing content that a user can choose be-
tween [2, 4, 10]. In our case, the interaction framework directly
impacts how we structure our data for transferring the available
knowledge.

3 SYSTEM OVERVIEW
Figure 1 overviews our approach. First, we need to have a source
model trained on interactions with humans in our source game
domain. In this case, we use Super Mario Bros. as our source game
domain, and the Morai Maker deep Rl model as our source model
[6]. Our goal is to usefully transfer this knowledge to our target
model in a different domain. In our case, our target domain is
Zelda dungeon rooms. We chose this domain as our target domain
because it represents a very different type of game level, and we
wanted to test whether any knowledge could be usefully transferred
between such distinct domains. Finally, we need a dataset to guide
the transfer to the target domain, and it needs to approximate
real interaction data in the target domain. We explore a number
of strategies for approximating this interaction data from non-
interactive, complete existing Zelda dungeon rooms.

3.1 Source domain
As discussed above, we used the Morai Maker Deep RL agent model
from prior work by Guzdial et al. as our source model [6]. Morai
Maker is a level design editor for Super Mario Bros., which is similar
to the well-known Mario Maker (literally named because it has
“More AI”), but is research oriented with a co-creative AI partner 1.
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Figure 1: An overview of our transfer learning approach

As a disclaimer, Guzdial et al. did not modify the Super Mario Bros.
game released by Nintendo [11], nor modify the hobbyist game
“Infinite Mario Bros.” [1]. Instead, they produced a Unity version
of the game. The editor includes a large “End Turn” button, which
switches control between a human editor and AI partner. The goal
of the co-creative AI partner is to be able to make useful additions
to the level on its turn, such that the human user will decide to keep
the additions. Because of this, the AI partner typically learned to
make a relatively small number of changes, to minimize the chance
of deletion, andwhich allowed the human user to further participate
in the design process. A number of studies have been runwithMorai
Maker. During Guzdial et al.’s first study they had three Machine
Learning (ML) agent options for the AI partner [7]. The three ML
agents were trained on non-interaction data: existing Super Mario
Bros. levels. They ran the first user subject study with the three ML
agents and collected data from the interactions between the ML
agents and human users. They then pre-trained a deep RL agent
on this interaction data, treating each co-creative level generation
process like a rollout from an RL agent. This RL agent then further
trained on interactions with published game designers in a second
user subject study [6]. The result for the second user subject study
showed that users felt the RL agent adapted to them at a rate of 2 to 1,
and the adaptations were well received. However, desired behaviour
for RL agent among users varied widely, with some wanting the
agent to do exactly what they did and others preferring more novel
behaviour.

Guzdial et al. formulated their co-creative design problem as a
semi-Markov Decision Process [13], with a state of size 40x15x34.
This represented 40 columns (each 15 tiles in height) of the under-
construction level at the pointwhere the user pressed the “End Turn”
button. The 34 represents the Super Mario Bros. entities included
in Morai Maker (e.g. ground, bricks, stairs, goombas, koopas, etc.).
Their action size was 40x15x32, representing adding a particular
entity (32) at a particular location. The reason for the discrepancy
(34 vs. 32) was that the human user could place two entities that the
agent could not (Mario himself and the end of level flag). The output
of their agent was a Q-table of the same size as the action space,
representing the value of adding a particular entity as a particular
location. The reward was defined as follows: for each addition made
by the AI partner that the human user kept, the Deep RL agent
receives +0.1, and for each addition that the user deletes, the Deep
RL agent receives -0.1. When the level is completed, the human
user gave the Deep RL agent +1 reward if the user would reuse the
AI partner and -1 reward if the user would not reuse the AI partner.

3.2 Zelda Room Generation Markov Decision
Process

In this section, we walk through our Markov Decision Process
(MDP) formulation. We employ the Zelda dungeon room repre-
sentation from the Video Game Level Corpus (VGLC) [19]. This
includes the 10 dungeons from the original Legend of Zelda repre-
sented in a tile-based representation. Each room is represented as
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an 11x16 matrix. There are 10 tile types in the VGLC representation,
each representing a category of Zelda dungeon entities (e.g. floor,
block, monster, etc.). Thus, we define our state space S as 11x16x10,
or all possible combinations of tiles for an 11x16 room. We define
our action function A(s) as all possible additions of all possible
tiles at any location in a state, or 11x16x10 possible actions. Our
Q table values for this MDP then have the same shape, 11x16x10,
representing the value of adding a particular tile at a particular
location. To derive a final policy π , we employ a threshold θ , and
make all additions above θ for a particular state s in our Q table. If
multiple actions at the same location are above θ , then we take the
action with the highest Q value or one at random, depending on the
use case. We employ the same reward function R, as in Guzdial et
al.’s Morai Maker work [6], with retained additions receiving +0.1,
and deleted additions receiving -0.1. We also give a +1 reward if a
room is considered high quality and -1 reward if a room is consid-
ered low quality. We employ a discount factor γ of 0.1, indicating a
preference for near term reward.

3.3 Model Architecture
We created our Zelda RL agent such that the architecture is as close
as possible to the agent trained by Guzdial et al. [6]. There are two
reasons for our decision. First, by having similar layers between
source and target models we can transfer as much knowledge as
possible. Second, there is very little data on deep RL architectures
for co-creative PCGML, and thus we defer to this existing work.
As shown on 1, the neural network layers are exactly the same
between the two models, except for the input layer and the out-
put layer. This is due to the difference in dimensions between the
different game level representations. We employed coefficient of
determination as our evaluation metric for development purposes
and mean_square loss as our loss function during training, with all
other hyperparameters matching the original work [7].

3.4 Data
We require an approximation of interactive Zelda dungeon room
data to guide the transfer learning process. However, there’s no
existing data that fits this requirement. Even the mixed initiative
user study from Schrum et al. [14] did not produce the necessary
training data, since their system produces entire complete levels
without human interaction, where we require data from iterative,
turn-based interactions. Thus, we have no choice but to approxi-
mate the required interaction data from the non-interactive VGLC
data [19].

Essentially, we look to approximate a hypothetical situation in
which the original human level designers of Zelda designed the
rooms with an AI agent partner. However, there is no literature
on how best to approximate interaction data from non-interaction
data. Thus, we employ three different strategies. In all cases, we
take a final complete room and iteratively remove groups of tiles.
This gives a sequence of states with an initial complete room and a
final, empty or nearly empty room (depending on the strategy). We
can then reverse this sequence to approximate the kind of iterative,
incremental design process we require. The sequence of removals
becomes a sequence of additions, a series of actions we treat as
coming from the Deep RL agent, despite the fact that the original

levels were designed entirely by humans. We essentially present
that instead of the human author creative the original rooms, an
AI agent iteratively built each original room with iterative, positive
human feedback. We have three strategies for determining what
tiles are removed/added in each step of this sequence:

• Tile Type: For this strategy we iterate through the 10 VGLC
tile types. In each iteration all tiles of that type are removed
at once. The removal process terminates once all tiles in a
room have been removed. We include this strategy because
we expect that some users might choose to build a room this
way, essentially picking one tile at a time from a palette of
options and adding all instances of that tile they desire to a
room.

• 3x3:We randomly select an location as the center of a 3x3
tile section of the room, and remove all tiles that fall within
this square. The removal process terminates when three of
these 3x3s have been removed. The choice of 3x3 location is
random, except that it will not intersect with another 3x3,
though they may touch, creating up to 6 tiles wide or tall that
have been removed. We choose this removal strategy as we
think some users may choose to focus on small subsections
of a room during the design process.

• Random:We randomly remove tiles in a room for this strat-
egy. The removal process consists of multiple iterations, with
each step in the process removing 10 tiles at random loca-
tions, except when the tile is already empty. The removal pro-
cess terminates once all tiles in a room have been removed.
We choose this removal strategy as an extreme scattershot
approach to room generation. We do not expect that users
would take this exact approach, but it represents an approach
with the least meta-structure for the agent to grasp. In this
way it might even be considered a more human-like strategy
in terms of the variance of additions. Thus, we anticipate it
will be the most difficult type of data to learn from.

Each sequence, once reversed, approximates a rollout by the deep
RL agent, with each “reversed” removal representing an action a.
We assign a reward of +0.1 for each a, given that every action is
“kept”. We also give a final reward of +1 at the end of the sequence,
because the rooms were already in an existing game, and so we
can consider them to be of high quality. We repeat this process
for each removal strategy for each room, giving us three distinct
datasets to guide the transfer process. We separated each room into
train and test groups prior to undertaking this process. However,
each strategy led to different numbers of s , a, r triplets for training
purposes, even though all strategies used the same train and test
room sets. As such, the Tile dataset had a 544-61 train-test split, the
3x3 dataset had a 1133-126 train-test split, and the Random dataset
had a 6820-758 train-test split.

3.5 Transfer
We employ a transfer learning approach, which can be considered
an example of finetuning or student-teacher transfer learning [22].
Thus, we need to transfer the trained weights from each layer
of our source network to the corresponding layer of our target
network. For the identical layers, this is a trivial task. However,
for the layers with different shapes we are unable to transfer all
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available weights. In all of these cases, our target model is smaller
across all dimensions than the our source model. For example, our
source model’s last input dimension is 34, while our last input
dimension is 10. Thus, we transfer only the first 10 of the 34 4x4
filters in the first convolution layer. While there’s no guarantee that
the first 10 filters will be the best 10 filters to transfer, we take this
strategy throughout all layers with mismatched dimensions. Since
our source domain and target domain have different design layouts,
the knowledge the model will require will also differ. Therefore, all
of the transferred weights are trainable.

3.6 Training
The final step of our approach is to finetune the transferred weights
on our approximated interaction data. We employ the adam opti-
mizer as our optimizer due to the variance present in the original
Zelda rooms. We set our batch size to 8 based on initial experiments.
We also set our learning rate experimentally to 0.0001. For training
time, we ran an exhaustive series of tests, training with each dataset
from 1-20 epochs, and found that 15 epochs was ideal based on
performance on the training data. While this number may seem
low, it is not unusual for transfer learning to require significantly
fewer epochs than training from scratch. In addition, we found that
training for longer than 15 epochs tended to lead to a loss of any
benefit from the transfer weight initialization.

4 EVALUATION
Our method seeks to approximate an interactive model for a game
where there is no interaction data available. Ideally, we’d use a
human subject study to determine the relative benefits of our three
interaction data approximations, and whether there was any benefit
to employing transfer learning rather than training from scratch
even between these very distinct domains. However, for this initial
exploration of this approach we focus on quantitative experiments.
The purpose of these experiments will be to give some initial approx-
imation of how well our transfer learning method might work as a
co-creative agent. We employ two baseline agents to compare with
our Transfer learning agent. Both baselines use the same neural
network architecture as our Transfer learning agent, and only differ
in terms of the training regimen. We call our first agent “Scratch
agent”, which trains on the same approximate interaction data as
the Transfer learning agent, but does not transfer knowledge from
the source agent. This is analogous to a baseline employed in prior
work [7]. Since both the Scratch agent and our Transfer learning
agent use our MDP setup, we call them Reinforcement Learning
(RL) agents. The inclusion of this baseline will allow us to inves-
tigate whether there’s any evidence of positive transfer between
the distinct domains of Mario game level design and Zelda room
design.

Our second baseline agent is called “Supervised agent”. As the
name suggests, it employs Supervised Learning rather than Rein-
forcement Learning, and it trains on a different yet similarly pro-
cessed dataset compared to the other two agents. The Supervised
learning (SL) agent directly predicts additions rather than q-table
values, using the actual addition as the ground truth. From each re-
moval strategy described in section 3, we created two datasets. One
dataset for the RL agents and one for the SL agent. We also name the

datasets based on the removal strategy, so we have 6 datasets: two
Tile sets, two 3x3 sets, and two Random sets. Note that the datasets
for RL and SL are processed together for each removal strategy,
which allows for parallelism between the approaches. This is im-
portant for comparison purposes. We also remove any duplicates
from the datasets to avoid biasing our agents towards overly com-
mon patterns like adding walls around the edge of the room. We
found experimentally that this helps all the agents to add more of
the game entities like monsters and blocks. Otherwise, the agents
would just continually predict walls with high confidence.

To evaluate the three agent’s performance, we test each agent
on a withheld test set for each dataset. We define two evaluation
metrics, which we use to compare the performance of each agent
on each test set. We needed to define these metrics rather than just
using a more standard concept of accuracy or an error function
like mean square as the RL agents and SL agent were predicting
fundamentally different things. Our two metrics are:

(1) Actionmetric:Thismetric uses the actual next action/addition
for each input state as a ground truth. We compare the pre-
dicted action from each approach to this ground truth and
count up the number of differences between the two. No-
tably, this means that a predicted addition that would later
be in the complete room, but was not in the next predefined
action would be considered incorrect. This metric is meant
to approximate how well the agent follows the desired itera-
tive design of the room. We can consider each of our three
removal strategies to be equivalent to a strict human collabo-
rator, who only wants the AI to make particular additions at
each step of the generation process. Since we are counting
the number of differences we prefer a lower value.

(2) Goal metric: This metric uses the final complete room as a
ground truth or “goal”, and filters out any predicted additions
that were already in the input state. In comparison to the
Action metric above we are comparing the extent to which
the agent predicts additions that would eventually be in
the room, since we know ahead of time what all the final
rooms should look like in the test set. This metric is meant to
approximate the what degree the agents attempt to create the
final room, even if it ignores the intended, iterative design
process.

We require a θ value for both the RL agents in order to translate
their predicted q values into actions/additions. While the SL agent
does not predict q values, we also require a θ to translate its output
weight activation into additions. To derive this θ , we have each
agent predict on the training sets of each dataset, and select the θ
values that would minimize the Action and Goal metrics over the
training set. We then employ this θ value when predicting actions
for the withheld test set.

We note that high values for the Action and Goal metrics are not
necessarily a bad thing. Without a human to evaluate the additions,
we can only compare to ground truth values (the desired action
or desired final room). However, “incorrect” additions may still be
useful to a human designer. Further, each dataset is only an approx-
imation of how users might iteratively construct Zelda dungeon
rooms, but we don’t expect any users would follow this strategies
this closely in reality. Human level designers demonstrate a wide
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range of level design behaviours [6], which these three removal
strategies cannot possibly cover. However, these still represent
three potential level design strategies, and the metrics represent
ways human level designers might evaluate their AI partner.

4.1 Generation
Given θ values, we can also generate Zelda dungeon room au-
tonomously. For each agent trained on each dataset, we can have
the agent predict from an initial empty room, make additions to the
room based on θ , then have the agent predict again on the room
with previous predictions as input. We repeat this process until the
room is filled, or there are several blank/void locations that have no
predicted values above θ . In the case where there are multiple tile
types for a particular position with values above θ , we randomly
choose between them.

We include a third metric to evaluate the agents in terms of
their autonomously generated rooms. We call this metric Output
Diversity, which is meant to indicate howmuch variance is present
between different rooms generated by the same agent. For this
metric, we simply count up the number of unique tile values at each
location for all of the generated rooms. To get a sense of this metric
over the possibility space of the agent generators, we generate 100
rooms for each agent. We report the number of differences divided
by 100 for this set.

5 RESULTS
We train three agents for each of the three datasets, meaning we
have nine agents in total. We use a constant random seed across all
experiments to ensure they are reproducible and in order to better
compare between our agents. We give the results over the withheld
test data for our two metrics over the test data in Table 1 and Table
2.

Table 1 gives our results for the Action metric. These numbers
are the average number of differences between the true, desired
additions and the predicted additions. We have bolded the smallest
values for each dataset, indicating the smallest average number
of differences. Across all three datasets, the RL agents outperform
the SL agent for this metric, with our transfer learning approach
outperforming the Scratch agent for two of the three datasets. For
the Tile set and 3x3 datasets, the RL agents perform very similarly.
We expect this is due to the fact that both of these datasets had
highly structured strategies for removing/adding content. As such,
there was little benefit to initializing on the human data.

The Random dataset was unstructured in terms of how tiles
were added/removed, and therefore likely to have more human-like
variance in its behavior. Though the difference might still seem
small ( 0.2), the Transfer Learning agent outperforms the Scratch
agent. Note that the random dataset also had the largest test set,
meaning this translates to a difference of roughly 150 mistakes.
Alternatively, one can consider this as the Transfer learning agent
making one fewer mistake in one of every five input test states
on average. While this is a small improvement, we take it as a
positive sign given that the Transfer learning agent had a source
domain so distinct from our test domain. We found that this small 1
tile improvement was consistent between the Scratch agent and
Transfer learning agent qualitatively, which we demonstrate below.

Per Table 1, the supervised learning (SL) agent underperformed
compared to the RL agents in terms of accurately making the de-
sired additions only. This is not surprising. Given the nature of
an iterative design task, supervised learning is less suitable than
reinforcement learning. The worst performance of the SL agent
was on the random dataset. We found that performance of the SL
agent was due to the agent attempting to just complete the given
room, making all additions necessary to do so at every step. This
led to the worst performance for the Random dataset as it had the
longest sequences of additions.

Table 2 gives our results for the Goal Metric. These values are
the average number of incorrect predictions compared to the final
output room across each test split for each dataset. As such, they are
essentially a measure of the degree to which the additions might
be accepted by our hypothetical human partner, assuming that
human’s goal was the final room. The maximum value of this metric
would have been 176, if something were added at every location
and it were incorrect. Unlike for the Action Metric, the SL agent
outperformed both of the RL agents for this metric. We anticipate
this was due to the fact that the SL agent better generalized over
the available training rooms, and so predicted entire rooms that
were close to correct for each test instance.

The Tile set Goal metric values are the closest across all three
agents, which we anticipate is due to the similarity of where various
tiles are positioned in each room (e.g. walls always occur at the
edges of each room). The random set performance is especially
interesting. While the SL agent performed very poorly on this set
for the action metric, it clearly outperforms the RL agents for the
goal metric. We found this was due to the SL agent ignoring the
desired sequence of additions, and just attempting to fully recreate
the room. Despite the RL agents poor performance on this metric,
the Transfer learning agent slightly outperforms the Scratch agent
on two of the three datasets.

The results from Table 1 and 2 indicate that reinforcement learn-
ing outperforms supervised learning when we want to model itera-
tive design tasks, but not when we only care about the accuracy of
a final predicted output. They also indicate a slight benefit to em-
ploying transfer learning rather than simply training on interaction
data directly. However, we again note that these metrics cannot
fully approximate human evaluation. It’s possible, as demonstrated
in prior work, that agents only trained on existing data may appear
highly accurate, but are less able to handle the wide variance of
human designer behavior [7].

Table 3 includes our results for the Output Diversity metric. The
result that immediately stands out is Tile set values, which are 0
across the board. This indicates that the agents trained on the Tile
training set only ever output a single room each. We anticipate
this is due to the lack of randomness in the Tile removal method,
which only produced a single sequence for each room. Therefore,
generating rooms from an initially empty random input simply
led to the same room 100 times. In comparison, both the 3x3 and
Random sets led to more variance in the output rooms. The SL
agent performed much worse on this metric than the RL agents,
suggesting that it had a tendency to generate fairly similar rooms.
This suggests again that the SL agent may have generalized more
than the RL agents, producing more “average” output. However,
the output from the SL agent may be of higher quality, given the



Toward Co-creative Dungeon Generation via Transfer Learning FDG’21, August 3–6, 2021, Montreal, QC, Canada

Transfer learning agent Scratch agent Supervised agent
Tile set 10.9344 11.0000 11.8197
3x3 set 7.2698 7.1429 8.9444
random set 9.9670 10.1636 18.4828

Table 1: Action metric results

Transfer learning agent Scratch agent Supervised agent
Tile set 16.4426 16.5574 15.8361
3x3 set 5.8968 5.9603 0.6667
random set 68.0752 65.8153 33.9472

Table 2: Goal metric results

Transfer learning agent Scratch agent Supervised agent
Tile set 0 0 0
3x3 set 100.037 100.9184 42.7618
random set 112.9196 110.7303 67.0448

Table 3: Output diversity results

results found in Table 2. We present further evidence towards this
below.

The Rl agents performed nearly identically for the Output diver-
sity results. The Scrach agent had one more different tile on average
when trained on the 3x3 dataset, and the Transfer Learning agent
had 2 more differences on average when trained on the Random
dataset. However, we again note that just because an approach
output more rooms does not indicate that the rooms were better
overall. We found that while the Transfer learning agent output
fewer unique rooms for the 3x3 dataset that the rooms it did output
looked more like the original Zelda rooms.

5.1 Qualitative Examples
We present visualized examples of the next predicted action for
each agent and each dataset across a series of hand-picked test
examples in Figure 2. We present one Tile set example and two
examples for the other datasets, due to their greater variety. Each
column from left to right indicates the final expected room, the
input state to the agent, and then the agent’s actions/additions
added to the input. We identify a number of comparisons between
these predicted actions. First, the RL agents tended to have only a
few differences between them, with only a single difference for the
first two rows. This matches the quantitative results we reported
in the previous subsection.

For the input state in the second row of Figure 2, the Scratch
agent could not make any predicted action with the optimal θ value
over the training set. In comparison, the Transfer learning agent
could make one addition. This may be due to the inherited weights
from the source agent, which was forced to always make at least
one addition [6]. In comparison, the SL agent appears to have done
a better job of filling in more tiles that match the final expected
room, which parallels the quantitative results found in Table 2.
However, for a turn-based, iterative design task this may not be
ideal, since it limits the possibility for the human partner to have

Figure 2: Hand-selected examples of next actions predicted
from test instances.

an impact on the room’s design in their next turn. In addition, the
actions from the SL agent are not always ideal. As we can see in
the first row, the SL agent’s additions fail to add floor tiles above
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the staircase, making it impossible for a player to make their way
to the staircase from the door.

Figure 3: Hand-selected examples of room generation.

It is more difficult to draw comparisons over the behaviors of the
agents for the Random set input states on the final rows of Figure 2.
For the first row, the Scratch agent made four additions present in
the expected final room, compared to the Transfer learning agent’s
three. The Supervised agent, on the other hand, nearly completed
the room. This is not ideal in the co-creative setting. While all the
Supervised agent’s additions were present in the final room, this
severely limits a hypothetical human partner in the next “turn”.
For the last row, the Scratch agent made five additions present
in the expected final room, compared to seven from the Transfer
Learning agent. Taking both of these sets of additions together, this
demonstrates the slight edge given to the Transfer learning agent in
the quantitative results (9 vs 10 additions between the two rooms).
Although the difference in the number of additions between the
Scratch agent and the Transfer learning agent is small, even a single
difference can have a large impact in this domain. Because a room
can only have 176 tiles, the placement of one tile can have a large
impact on the design of the room.

The comparison in Figure 2 also shows that the Transfer learning
agent has a better model of the design of Zelda dungeon rooms
compared to the Scratch agent. For example, the first row shows
that, in the location where there are supposed to be blocks, the
Scratch agent twice adds floor tiles where there should be a block,
whereas the Transfer learning agent only does this once. And in

the second row, the Transfer learning agent is able to take the first
step towards adding a floor whereas the Scratch agent makes no
addition.

In Figure 3 we include one hand-picked example of autonomous
room generation from an initially empty room, for each dataset
(row) and agent (column). We know from the Output Diversity
results in Table 3 that the rooms present in the first row are the
only outputs for each agent trained on the Tile set. The only major
difference between these outputs are the type of error the RL agents
make (one placing an element+block tile in a wall and one placing
a staircase in a wall), and that the RL agents create a room with
four doors instead of the two doors generated by the SL agent.
The other two datasets led to far more noisy outputs, indicating
that the agents trained on these datasets are not well-suited to
autonomous room generation from empty inputs. For both the 3x3
and Random datasets the SL agent appears to have roughly learned
that rooms should have walls surrounding them with some content
in the middle, though it has not learned to place floor tiles in the
center of rooms when trained on the 3x3 set. The Transfer learning
agent also seems to have roughly learned that rooms are composed
of walls with content in the center for the 3x3 set, though it also
does not learn to employ floor tiles. In comparison, on the 3x3 set,
the Scratch agent is unable to produce anything but noise. On the
Random set, both agents produce similar noise when attempting
autonomous generation.

6 DISCUSSION
Our purpose for this paper was to investigate transferring the
knowledge of an existing co-creative agent for one game domain
to a very different game domain. We further explored different
strategies for approximating interaction data to guide this transfer.
While we indicated previously that we require a human subject
study to fully evaluate this work, these initial results do point
to some takeaways. In particular, our evaluation presents some
initial evidence to the tradeoffs between supervised learning and
reinforcement learning applied to this task. Given these results, we
encourage the application of supervised learning to autonomous
generation tasks and reinforcement learning to iterative, co-creative
tasks. While this may seem obvious, we believe these are the first
results pointing to this dichotomy for PCGML.

The results of attempting to apply transfer learning to this task
are fairly weak. While there is evidence that transfer learning is
beneficial on certain tasks and for certain metrics, we do not present
a strong difference between our transfer learning method and train-
ing from scratch. However, as indicated above, this may be due to
the inability to quantitatively approximate human judgement. For
example, even in situations where the number of correct additions
were similar between the RL agents, it’s unclear which of these
additions a human partner would prefer. To more cleanly compare
between transfer learning and training from scratch, we would
need a human subject study.

One other reason for this lack of clear distinction between train-
ing from scratch and transfer learning may be due to how different
the source domain (Super Mario Bros. levels) is from the target do-
main (Zelda dungeon rooms). We spoke to this difference above, but
one aspect we did not touch on was the difference in terms of the
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size of the problem. The SMB MDP had a state space of 40x15x34,
compared to the Zelda MDP state space of 11x16x10. Given that the
state space for the SMB MDP was over ten times larger, this could
mean that the Zelda design domain was just too simple to benefit
from much of the knowledge present in the source model. If so, this
could indicate that our decision to take the first X filters/weights
for mismatched layers was a poor one. The reason we ran this
initial experiments on this far transfer task was to determine the
boundaries of this application of transfer learning. In future work,
we hope to investigate the implications of transferring between
more similar source and target domains, and to explore alternative
transfer approaches for mismatched weights.

In the original work our approach is based on [7], the authors
found that training an RL agent on approximated interactive Super
Mario Bros. data could outperform an agent trained on interaction
data for some tasks. However, when compared across a number
of human users, the true interaction data agent outperformed the
approximated interaction data agent at a ratio of 9:2. While this
is much better than our 2:1 performance comparing the Transfer
learning and Scratch agents, it points to the important of actual
interaction data, both for training and testing agents. As such, we
anticipate that if we had access to some interactive Zelda dungeon
room generation data, even if it was not enough to train an agent
from scratch, we might be able to use it to better guide the transfer
learning process. We hope to investigate this further in future work.

7 CONCLUSIONS
In this paper we explored an initial attempt at applying transfer
learning to co-creative PCGML. We took a source model trained
on interactions with humans for Super Mario Bros. level genera-
tion and attempted to transfer it to the task of co-creative Zelda
dungeon room generation. We presented three strategies for ap-
proximating interaction data from non-interactive existing data.
Our initial results demonstrated clear takeaways for when to ap-
ply Supervised Learning and Reinforcement learning, and some
support for applying Transfer learning over training from scratch.
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