Mutation Models:
Learning to Generate Levels by Imitating Evolution

Ahmed Khalifa
ahmed@akhalifa.com
Institute of Digital Games
University of Malta
Msida, Malta

ABSTRACT

Search-based procedural content generation (PCG) is a well-known
method for level generation in games. Its key advantage is that it
is generic and able to satisfy functional constraints. However, due
to the heavy computational costs to run these algorithms online,
search-based PCG is rarely utilized for real-time generation. In this
paper, we introduce mutation models, a new type of iterative level
generator based on machine learning. We train a model to imitate
the evolutionary process and use the trained model to generate
levels. This trained model is able to modify noisy levels sequentially
to create better levels without the need for a fitness function during
inference. We evaluate our trained models on a 2D maze generation
task. We compare several different versions of the method: training
the models either at the end of evolution (normal evolution) or
every 100 generations (assisted evolution) and using the model as
a mutation function during evolution. Using the assisted evolution
process, the final trained models are able to generate mazes with a
success rate of 99% and high diversity of 86%. The trained model is
many times faster than the evolutionary process it was trained on.
This work opens the door to a new way of learning level generators
guided by an evolutionary process, meaning automatic creation of
generators with specifiable constraints and objectives that are fast
enough for runtime deployment in games.

KEYWORDS

Neural Networks, Evolution, Data Augmentation, Surrogate Models,
Procedural Content Generation, Expressive Range Analysis, Level
Generation

1 INTRODUCTION

Very coarsely, we can construct content generators in two different
ways. We can either create a generator that constructs an artifact
in a finite (often fixed) number of steps without testing during
the construction process. The other way is to perform a search or
optimization process where either a whole artifact or part of it is
tested repeatedly during generation to guide it forward [41]. In gen-
eral, constructive generators are much faster and therefore better
suited to real-time generation than search-based generators. On the
other hand, the lack of quality checking during the construction
process means that the expressive spaces of the generator may need
to be restricted in order to guarantee that the content is playable
(not functionally broken). Creating a good constructive generator
is hard, and often requires expert human effort for each use case.
Generators based on search and optimization, on the other hand,
can guarantee playability but are much slower; depending on the
cost of content evaluation, they can be unworkably slow.

Michael Cerny Green
mike.green@nyu.edu
Game Innovation Lab
New York University

Brooklyn, NY, USA

Julian Togelius
julian@togelius.com
Game Innovation Lab
New York University

Brooklyn, NY, USA

Could these advantages be combined? Could we create construc-
tive generators that are fast yet have functionality guarantees and
a wide expressive range? Could these be created automatically?
It stands to reason that one could use machine learning to some-
how learn generators. While the computational costs of learning a
generator may be large, using the learned model as a constructive
generator is computationally cheap; in other words, computation
is front-loaded. Various self-supervised approaches have been ad-
vanced, building on GANSs [42, 43] or autoencoders [18, 34], that
learn from existing content to generate new content. Another re-
cent approach, the Path of Destruction, turns existing content into
sequences of repair actions that can be modeled [37]. Obviously,
self-supervised approaches require a decently-sized library of con-
tent, such as levels, to learn from [27, 40].

Alternatively one could use evolution [13, 21, 25] or reinforce-
ment learning [22, 28, 36] (PCGRL) to learn generators. This does
not require existing content, but it does necessitate the existence of
a good reward or fitness function. Specifying a good fitness/reward
function for generating content generators can be much harder
than specifying a good fitness/reward function for “simply” gen-
erating content. The intuition behind this is that we more or less
know what good content looks like, but not necessarily what a good
content generator looks like. To take a concrete issue, a good fit-
ness/reward function for a generator will probably need to reward
appropriately diverse output from the generator.

In this paper, we propose another way of generating competent
content generators. Much like PCGRL, we are not reliant on existing
content examples. However, our method also does not need a way to
evaluate content generator quality; we only need a way to evaluate
good content. The goal is to make it possible to create fast content
generators that are as reliable, controllable, and easy to specify as
search-based generators. In a nutshell, our approach entails building
a search-based generator, and training a neural network to take the
actions the evolutionary algorithm would take. The sequence of
changes that are made by evolution can be seen as training data
for a supervised learning process, and the resulting model will take
those actions that the evolutionary process would. This can be seen
as imitation learning on evolutionary trajectories; the approach
has similarities with offline reinforcement and surrogate models in
evolution.

2 BACKGROUND

In the following subsections, we review related background work
in regards to procedural content generation (PCG), focusing on
search-based and machine learning based methods. We also review
the concept of surrogate modeling for evolutionary systems.

Population

\ 4

Evolution
Loop

Mutate the Top X Individuals
using Trained Neural Network

Select Top X
Individuals

Extract Evolution
Trajectories

Loop

Train Neural Network on
Evolution Trajectories

Figure 1: System diagram of the mutation models framework. The system consists of two main parts: evolution loop and
training loop. The evolution loop is the usual evolutionary algorithm which evolves chromosomes using a fitness function. The
training loop converts the evolution history into a dataset then trains a machine learning model on it. This trained machine
learning model can be used to assist evolution by acting as a mutator or only trained at the end of evolution. If the model is
being used as a mutator, the training loop happens every I generations to improve the accuracy of the machine learning model.
Later when the evolution is done, the trained model can be used as a level generator as it learned to imitate the successful

evolution trajectories.

2.1 Search-based PCG

Search-based PCG defines a family of PCG techniques powered
by search methods to generate content [41]. Evolutionary algo-
rithms are often used, as they can be applied to many problems
like level generation in video games. Search-based PCG has been
applied to many frameworks and games, such as the General Video
Game Al framework [33], PuzzleScript [23], Cut the Rope (Zepto-
Lab, 2010) [35], and Mazes [3]. Search-based techniques have been
used to generate levels [2, 5, 23], game rules [7, 9, 24] and level
generators [13, 21, 25].

2.2 PCGML

Procedural content generation via machine learning (PCGML) is
a process of generating content using ML algorithms based on
input example. These methods are not often used outside of the
research community because of their reliance on large datasets, long
training times, and little control of the generated output. There are
exceptions: for example, Caves of Qud [15] uses PCGML to generate
books and other aesthetic elements. Research applications with
PCGML have used many different techniques including Markov
Chains [38], N-Grams [10], GANSs [42, 43], Autoencoders [18, 34],
and LSTMs [39].

Most related to this work is a project by Siper et al. in which a
network is trained to repair levels [37], modeling a so-called Path of
Destruction. This can be done by taking a series of “goal levels” and
proceeding to randomly destroy them. A network is then trained on
the repair trajectories to learn how to convert these destroyed levels
back to the goal levels. The difference between Path of Destruction
and most of the recent PCGML work is the network generates
the content iteratively (similar to Wave Function Collapse [20]

and Markov Random Fields [38]) while for example GAN-based or
autoencoder-based generators generate content in one shot (one
pass). The approach proposed is similar to Path of Destruction in
that we are training a networks to iteratively improve randomized
levels, but instead of training it on reversed paths of destruction we
train it by imitating the successful mutation operation of evolution.

2.3 PCGRL

Procedural content generation via reinforcement learning (PC-
GRL) [22] is a process of generating content using RL algorithms.
PCGRL transforms the generation process to a game playing pro-
cess where an agent can take actions at several states and get a
reward based on that. The work proposes three different methods
to achieve that: narrow, turtle, and wide representations. Narrow
representation transforms the generation into a process of asking
the agent about each tile in the level if it needs to change or not
and if yes what is the value of change. On the other hand, turtle
representation has more control over the location by allowing the
agent to either modify the current tile (like narrow) or move to a
neighboring tile. Finally, wide representation provides the agent
with maximum control by allowing the agent to select the location
freely and the modification value for it. In this work, we will be
using the narrow representation as it provides a small action space
for the agent and has comparable results to the other two [22].
PCGRL techniques have been used in level/experience gener-
ation [8, 12, 28, 31, 36, 44, 46]. It is difficult to transform content
generation into a reinforcement environment, thus there is a few
PCGRL examples in either academia or industry compared to other
methods. Similar to Path of Destruction, PCGRL generators are

iterative, meaning that they produce content using multiple mod-
ification steps, action by action. This grants certain advantages
to PCGRL: for example, it is often easier to build mixed-initiative
systems around them [11, 16, 17].

2.4 Surrogate Modeling

Surrogate models are models of computationally expensive pro-
cesses, which can then be used in lieu of the process itself [32]. Sur-
rogate models are meant to be easier to evaluate than the process it
models, which translates to time and computational improvements.
Surrogates are typically constructed using a data-driven, bottom-
up approach, typically by training a network on a distribution of
intelligently selected data points.

Within evolutionary computation, it is common to use machine
learning to build surrogate models of the fitness function [19]. A
fitness surrogate model takes a genome as input and returns a
fitness value, just as the fitness function would; the advantage is
that the trained model is much faster than the actual fitness function.
In evolutionary algorithm applications where the fitness function
commonly dominates the computation time, surrogate modeling
is very useful. These surrogate models can be trained during an
individual evolutionary run or over several such runs. While it
would be possible in principle to learn surrogate models of all parts
of an evolutionary algorithm, they are predominantly applied to
the fitness function. The only attempt we know to create surrogate-
based mutation is built on a surrogate of the fitness function rather
than the mutation function itself [1].

3 MUTATION MODELS FRAMEWORK

In this paper, we train a machine learning model to imitate the
evolutionary process. The model takes a chromosome (in this case,
level) as input and outputs a modification to it. The end result is a
model that can generate content without the need for an evaluation
function. Figure 1 shows the full system diagram of the mutation
models framework, which consists of two parts: the evolution loop
and the training loop. The evolution loop is a standard evolution-
ary algorithm which evolves content by trying to increase fitness.
Within the training loop, data is extracted from the evolution loop
to train a machine learning model to perform successful mutations
(mutations that leads to higher fitness) like the evolutionary pro-
cess, thus the name mutation models. The next two subsections
explain both loops in detail.

3.1 Evolution Loop

The evolution loop is a normal, simple evolutionary algorithm. In
this work, we use the standard p + A evolution strategy without
self-adaptation [4]. The process as shown in Figure 1 is simple: it
optimizes levels to maximize their fitness. Unlike most evolution-
ary methods, our method retains the evolution history of every
chromosome by recording the process of mutations made to get
to its current form. The following steps explain the evolution loop
used in this work:

(1) Generate a random population of levels of size u + A.
(2) Pick the top p levels based on the fitness function to be
parents for the next generation.

G| plESes

(a) Mutation location (x=0, y=0) (b) Mutation Location (x=6, y=6)

Figure 2: Examples of transforming a level and a mutation
location to a cropped 8x8 level. This 8x8 cropped level act as
the input for our trained machine learning model.

(3) Generate A new levels by mutating the parent chromosomes
(u levels).

(4) Repeat the above steps for G generations or until conver-
gence.

We are not restricted to only use a p + A evolution strategy al-
gorithm. Other evolutionary algorithms would work well as long
as they do not require crossover and allow us to keep track of the
evolutionary history of the chromosomes across generations (for
example, in a continuous domain it would straightforward to use
the high-performing CMA-ES algorithm). However, the selected
mutation function will determine how the machine learning al-
gorithm imitates evolution. In this work, the mutations are small,
they only change one tile at a time. For example: the system picks a
random x,y coordinates (location) in the level and swaps the current
tile value with a new tile value or decide not change at all (action).
The action does not always need to be random: this could be sam-
pled from a machine learning model trained to perform successful
mutations (mutations that improve the fitness function). This will
be discussed in the next subsection.

3.2 Training Loop

The training loop is responsible for training a machine learning
algorithm to learn the evolutionary process. The idea is to train a
model on the successful mutations which cause the top X chromo-
somes from the population to have a high fitness. Doing so allows
the model to learn mutations that are likely to lead to improvement
of the level’s fitness. The following steps explain the training loop
used in this work:

(1) Pick top X chromosomes from the population.

(2) Extract the trajectory data (evolution history) from these
chromosomes to build a dataset of levels and mutations.

(3) Train a machine learning model on the extracted dataset.

The network’s training loop can occur at the end of evolution
on the top X evolved maps, which we call the “Normal” method. It
can also occur every I generations, allowing the network to be used
as the mutation operator during the evolution loop, which we call
the “Assisted” method. The “Assisted” method is similar in idea to
on-policy reinforcement learning: a network creates its own dataset,
which it then trains on. In contrast to traditional reinforcement
learning, the evolutionary process here is helping filter the training
dataset by only keeping the best data points.

In order to build the training dataset, we need to convert the
evolution history of a chromosome into inputs and outputs for
the machine learning model. We found inspiration in the “Narrow”

=
)

//—’_—/_ 200001

15000 4

ol
®

Max Fitness
o
o
Dataset Size

o
s

10000 4

5000 4

—— Assisted P

Normal /

0.21

0.0

-
)

P W) " SONSUSS N
. V\va\, /_,'H. Ve AT N
iy

/

Dataset Similarity
° °
> ®

1
S

o
o

—— Assisted —— Assisted
Normal Normal
0

0 T T T
0 250 500 750 1000 1250 1500 1750 2000 0 250 500 750
Generations

(a) Fitness over time

T T T T 0.
1000 1250 1500 1750 2000 0 250 500 750
Generations

(b) Dataset size over time

1000 1250 1500 1750 2000
Generations

(c) Evolution history similarity over time

Figure 3: Fitness, dataset size, and dataset similarity of the top 10 chromosomes of each generation over the course of “Normal”
evolution and “Assisted” evolution. The shaded area shows the 95% confidence interval over 3 runs.

representation in the PCGRL [22] environment. In the narrow rep-
resentation, the input is the mutation location and level state at
a certain point in history, while the output is the mutation value
(no change or the new tile value). In preliminary experiments, we
realized that using the entire level state does not help the machine
learning model generalize. We follow the work by Siper et al. [37]
and Ye et al. [45] in cropping the level state around the mutation
location, as shown in Figure 2.

4 EXPERIMENTS

To demonstrate each method’s capabilities, we apply them on a
simple domain in which they generate 2D maze layouts. We test
the two methods of training explained in section 3.2: “Normal” and
“Assisted”. The “Normal” method trains the model at the end after
evolution is done, while “Assisted” method retrains the model from
scratch every 100 generations and uses the freshly-trained model as
a mutation function in the evolution loop. All our experiments are
repeated 3 times (the full evolution loop including training a neural
network either at the end of evolution in the case of “Normal” or
during evolution in the case of “Assisted”), and we show the average
max fitness, dataset size, and dataset similarity across these runs
and the 95% confidence interval. After evolution is done, the final
trained models from each method are tested for their capabilities
on generating content without the need for a fitness function.

4.1 Domain

We use a 2D maze layout of size 14x14 (excluding the borders) as
our proof-of-concept test-bed. The goal is to generate a 2D layout
of solid and empty tiles such that all the empty tiles are accessible
from any other empty tile and the longest path in that layout is
maximized. Figure 4 shows the top 4 evolved maps by the evolu-
tionary algorithm showcasing full connectivity and long winding
paths.

4.2 Evolution Loop

As discussed in section 3.1, we are using y + A evolution strategy
with g = A = 50. The starting levels are initialized using a uniform
distribution with 50% probability for each tile to be either empty
or solid. The mutation operator picks a random location (x and y
position) and uses either a random mutation value for the “Normal”
method, or samples the value from the trained machine learning

model for the “Assisted” method. To guarantee diversity in the
“Assisted” method, there is a 25% chance to sample a random action
instead from the trained model. We run the evolution process for
2000 generations with a cascading fitness function which tries to
satisfy the connectivity constraint first then maximizes path length
as shown in equation 1:

05-(1-5) ifn>1andn <20
f=105+05-& ifn==1 (1)
0 otherwise

where n is the number of regions in the current level and p is the
length of the longest path length in the map.

4.3 Training Loop

The training loop is responsible about two things, creating a train-
ing dataset for the model and training the model. For the dataset
generation, we pick the top 10 chromosomes from the population
and extract their evolution history. The evolution history consists
of the current level, the mutation location, and the mutation action
at every generation in a chromosome’s history. We transform the
level and mutation location into an single image by adopting the
narrow representation from the PCGRL [22] framework. We crop
the level around the mutation location to be of size 8x8 as shown
in Figure 2. This cropped level is used as the input for the machine
learning model. The output of the model is the mutation action
that corresponds to the cropped level. In this domain, there are 3
different mutation actions: “No Change”, “Change to Empty”, and
“Change to Solid”.

The machine learning model is a small convolutional neural
network (224,771 parameters) with a similar architecture to the
Atari Deep-Q network [29]. The network consists of 3 convolu-
tional layers (with 3x3 filters and kernel size of 32, 64, and 128
respectively) followed by 2 fully connected layers (with 256 and
3 neurons respectively). We use 2 max pooling layers, each size 2,
after the first and second convolution layers to decrease the input
space size. All convolutional layers use same padding to make sure
the size of the input remains constant. All activation functions are
Relu except for the last layer, where we use softmax. The neural
network is trained using an Adam optimizer with learning rate
of 1074, a minibatch size of 32, and categorical cross entropy loss.
For the “Normal” method, we train a new network for 2, 4, and

8 epochs to explore how different epochs impact network results.
For the “Assisted” method, we only train the network for 2 epochs
due to the computation costs. The “Assisted” method network is
retrained from scratch (with random weights and a reset learning
rate) every 100 generations. This decision was decided as prelimi-
nary experiments showed that models trained continuously had a
higher chance to overfit on earlier data.

4.4 Model Inference

During the evolution/training step, both the “Normal” and “Assisted”
methods utilize a fitness function. The evolutionary algorithm cre-
ates a dataset which is used to train a neural network to imitate
the evolutionary process. After the model is trained (during in-
ference), the trained model does not use any fitness function in
either method. The inference step is the same regardless of which
evolution/training procedure is used. We use the final trained net-
work from each experiment to generate 100 levels starting from
noise (50% solid and 50% empty levels). The network actions are
sampled using the probability distribution from the last softmax
layer. The trained networks are run sequentially like a scanline over
the entire map multiple times, as proposed in [22]. The networks
stop iterating if they reach one of two cases: success (all the empty
tiles are fully connected) or failure (iterated on the whole map for
196 times). We record the success rate and the iteration number
that the model requires to reach a successful level. We also record
the path length of each of the successful generated levels with the
number of empty tiles, which we use to calculate the diversity of
the generated content. This diversity is shown both as an expressive
range analysis as well as a percentage of generated levels having
different combinations of path lengths and empty tiles.

5 RESULTS

In this section, we explore the results from our system. We start
showing the evolution results in Section 5.1. These results are col-
lected from the evolutionary generator which uses an evaluation
function to create levels. We analyze the effect of using the “Normal”
vs “Assisted” methods on the evolution loop. In contrast, Section 5.2
shows the results of the model inference. The results are collected
from the final trained models, which do not use a fitness function
during inference.

5.1 Evolution Results

Figure 3 displays different evolution metrics across the 2000 gener-
ations. The usage of “Assisted” method does not change the fitness
performance of the evolutionary algorithm with respect to the
“Normal” method. The only noticeable difference is the size of the
extracted dataset (Figure 3b) where the “Assisted” method manages
to create a slightly larger dataset than the “Normal” method. This
could be an effect of the network refusing to change some chro-
mosomes early (using the“No Change” action) when the mutation
location is not good enough. This would lead to these chromosomes
having a longer history than usual as they survive for multiple gen-
erations.

The last metric we observe is the similarities between the evolu-
tion histories of the top 10 chromosomes. We notice that the top
10 begin with very different trajectories but end up having almost

B e e e

(a) Top 4 generated maps from “Assisted” Evolution

i

(b) Top 4 generated maps from “Normal” Evolution

Figure 4: Top four maps at generation 2000, from two dif-
ferent evolutionary runs (“Assisted” evolution and “Normal”
evolution). All the four maps look almost identical with few
tile differences as evolutionary strategy tends to converge
when most chromosomes in the population become highly
similar to each other.

‘ Method H Success Diversity ‘ Iterations ‘
Assisted-2 || 99.67% + 0.49% | 86.83% +3.8% | 18.21 + 18.57
Normal-2 30.17% + 32.7% | 28.5% + 30.62% 61.7 £ 47.22
Normal-4 66.83% + 49.22% | 59.33% *+ 43.69% | 23.55 + 48.59
Normal-8 65.17% + 48.37% 60% + 44.59% 31.78 + 23.84

Table 1: The average and 95% confidence interval of 100 gener-
ated levels from 3 runs for success rate, diversity, and number
of iterations by the final trained network from “Assisted” and
“Normal” evolution. The “-#” after the name of an experiment
designates the number of epochs the final network used for
training.

identical trajectories with only slight differences (Figure 3c). This
was expected as evolutionary strategy tends to converge when
most chromosomes in the population become highly similar to
each other as shown in Figure 4. In future work, this might be
solved by using a more complex evolutionary algorithm or a qual-
ity diversity algorithm such as MAP-Elites [30] which could ensure
diverse trajectories. The similarity metric that we use is based on
the Ratcliff-Obershelp algorithm [6].

5.2 Model Inference Results

In this section, we compare the results between the final trained
network from the “Assisted” method using 2 epochs (Assisted — 2)
and the final trained networks from the “Normal” method using 2, 4,
and 8 epochs (Normal—2, Normal—4, and Normal —8 respectively).
Table 1 displays the success rate and diversity of the generated
levels as well as the number of iterations each model needs to
reach success (which we will refer from now on as “iterations”).
The diversity and iterations are only calculated on the successfully
generated levels, and not for failures.

All of the “Normal” trained models appear sensitive to the ex-
tracted dataset and varied widely in performance and diversity. We
believe that using random distributions of mutations in the “Normal”

AR

(a) Assisted-2

B RO

(b) Normal-2

R A DS 2

(c) Normal-4

B 5 B

(d) Normal-8

Figure 5: Four successful maps generated from the different
trained model via inference. None of these maps are gen-
erated using a fitness function. Each subcaption specifies
the name of the experiment, divided into 2 parts: name and
number. The name reflects the evolution process that cre-
ated the dataset for this model to be trained on (“Normal” or
“Assisted”). The number after the name of the experiment
designates the number of epochs the network used for train-
ing.

method to build the evolution trajectories produces a noisy and
unstable dataset to train on. However, trajectories built using the
output of the trained network used by the “Assisted” method seem
to produce a more consistent dataset that is easier to train a policy
on. This is similar to on-policy reinforcement learning where the
network is trying to learn from it own experience using rewards. In
this work, the reward comes in the form of dataset filtering through
evolution: only successful mutations are kept, and these mutations
are the ones that the network will be trained on. It is not surprising
that training for more epochs improves the performance of “Nor-
mal” method networks. However, this performance plateaus after
only 4 epochs which confirms that the “Assisted” method helps
training more than we expected. All of the networks take many
iterations to converge on a successful level with minimum average
of 18 and maximum average of 61. We believe that the “Assisted-2”
may take less iterations if it is trained for more epochs with a result
similar to what happens for the “Normal” methods.

Figure 5 displays four successful maps from each experiment.
The “Assisted” generated maps (Figure 5a), have features similar to

the original final maps. They contain long paths which contain long
vertical lines. The “Normal-2” generated maps are more open in the
upper left corner. We believe the small amount of epochs allows the
network to learn a very simple policy which erases tiles to have full
connectivity. “Normal-4” and “Normal-8” models also have more
open space compared to “Assisted” but appeared more structured
than “Normal-2”. Often, the easiest way to reach full connectivity
is to remove tiles from the level, as this will naturally “open it up”
We believe that “Normal-2” levels appear more open is because of
the cascaded fitness function, where the evolution trajectory starts
by connecting all the empty tiles then later improve path length.
These evolution trajectories tend to have more “Change to Empty”
actions at the beginning of evolution. We believe that the trained
policy might have learned this behavior when the level is noisy. It
learns to fully connect the map first, then later increase path length.
This doesn’t happen in the “Assisted-2” maps since the evolution is
guided by a neural network that can take different actions which
can be adjusted later. And since we terminate generation when
everything is connected, “Normal” networks might achieve full
connectivity just as generation ends, and before it begins to add
solid tiles, giving the feeling of open space.

Finally, Figure 6 displays the expressive range analysis of the
trained models across 3 runs. Although “Assisted-2” generated
maps have winding paths, they use on average more empty tiles
compared to the rest of the models. Although it appears that the
“Normal” method uses more empty tiles due to the openness of the
maps, this is not always the case. For example, “Normal-2” maps
seems more empty but a lot of the bottom left corner is solid. This
is the same with “Normal-4” and “Normal-8” where most of the
walls are clustered in the center. “Normal” maps give the feeling
of openness while containing more solid tiles compared to the
“Assisted” generated maps.

6 DISCUSSION

We can contrast the mutation models method proposed in this
paper to surrogate-assisted evolutionary computation. From a re-
inforcement learning perspective, fitness surrogate models can be
thought of as models of the V-function, or in other words state
value estimators. By using such a model to test multiple actions
(mutations/crossover) the best action (surviving genome) can be
chosen. The mutation models learned here are instead models of
direct action selection. They are similar to models of the Q-function
(action value estimators), but instead of returning the value of a par-
ticular mutation, they simply return the mutation to make (similar
to actor networks).

Imitating mutation may not have the same “speedup effect” on
evolution as surrogate modeling fitness functions as we still use
the fitness function during evolution (which is computationally
intensive) and the fitness value increases in the same rate as nor-
mal evolution (according to figure 3a). However, they can provide
expressive range where constructive generation methods fail to do
so. Figure 6 shows that the “Assisted-2” method especially has a lot
of promise in this area. Table 1 shows that the “Assisted-2” results
in the highest map diversity. We use the top 10 chromosomes of
each generation to train with. Perhaps by expanding this, we might
find even greater expressive range.

Path Length
Path Length

140
Empty Tiles

140
Empty Tiles

(a) Assisted-2 (b) Normal-2

Path Length

Path Length

140
Empty Tiles

140
Empty Tiles

(c) Normal-4 (d) Normal-8

Figure 6: Expressive range analysis of the generated maps during inference using the trained networks from the 4 different
experiments. The expressive range plots all the successful generated maps on a 2D space, organized by the number of empty
tiles and longest path length. Like Figure 5, the name of experiment is divided into 2 parts: name and number. The name
reflects the evolution process that created the dataset for this model to be trained on (“Normal” or “Assisted”). The ‘number
after the name of the experiment designates the number of epochs the network used for training,.

l Method H Success ‘ Diversity ‘ Wall Time (secs) ‘
Network 99.67% *+ 0.49% | 86.83% * 3.8% | 0.6612 + 2.3874
Evolution 100% 96% 12.6957 + 2.2571

Table 2: The average and 95% confidence interval of 100 gener-
ated levels by 3 networks trained using “Assisted” evolution
for success rate, diversity, and wall clock time compared to
the average for success rate, diversity, and wall clock time of
running 100 normal evolutionary runs till the evolution find
a fully connected level.

Search-based PCG methods are computationally expensive and
are thus not commonly used for online generation. We ran an ex-
periment to measure the wall clock time of normal evolution till
it find a fully connected level or 2000 generations reached. The
evolution took roughly 20x longer than mutation model inferenc-
ing as seen in table 2. This difference would be even greater if we
had used a more expensive fitness function during evolution, such
as gameplay simulation. In other words, the speed advantage of
Mutation Models will increase as the generation task gets harder.
Learning generators negates the need for an evaluation function
like fitness, thus speeding up the overall generation process during
inference. Evaluation is what typically takes most of the compu-
tational time for search-based generators. Through the use of our
method, developers might be able to benefit from the advantages
that search-based PCG provides without having to bear the cost of
online computation. Although evolution guarantees 100% success
rate and almost 100% diversity as seen in table 2, the “Assisted”
trained networks have comparable success rate and diversity with
drastically less time needed to generate the content.

We restricted the evolutionary algorithm to only have muta-
tion to simplify the process of extracting trajectories. Removing
crossover usually hinders evolution and in some problems the evo-
lution might get stuck in local optima. This was not the case in our
problem due to its simplicity. There is multiple different methods
to extract trajectories while crossover is happening. These methods
can be categorised into two main directions:

e Converting the crossover into small mutation steps. When

we extract trajectories whenever a crossover switch a big
amount of tiles, we compare these tiles to the state before

crossover and unpack these changes one a time in a random
order (similar to path of destruction [37]).

e Consider mutation as a new starting point for a new tra-
jectory. When we extract trajectories whenever a crossover
happen we consider the current game level as new level and
there is no dependency on the previous level.

This work introduces the opportunity to use an evolutionary al-
gorithm as an assisted process for reinforcement learning, similar to
Go-Explore algorithm [14] and offline reinforcement learning [26].
There is a lot to be explored and studied about this new paradigm.
For example, what will happen if the evolution trajectories between
the selected chromosomes are different? If we use a quality diversity
algorithm such as MAP-Elites [30], can we possibly learn a condi-
tional mutator that can change the content towards a certain area in
the generative space? We only discussed a very simple test bed prob-
lem, do the results from this test bed generalize to more complex
games or even generic optimization problems? Also, what about
the training algorithm, we only used basic supervised learning on
trajectories but one could try using Backward algorithm similar
to the one used in Go-Explore to get better results [14]. Finally,
we only explored creating the dataset from the evolution history,
what if we can create the dataset using a similar technique to the
Path of Destruction [37] where the evolution process is used as a
method to generate the goal set. We believe that using something
other than evolutionary history can free us to use more advanced
evolutionary methods and/or indirect representation.

7 CONCLUSION

This paper proposes Mutation Models, a new method of generating
content by building a machine learning model that imitates evo-
lution. We use evolution trajectories to train a machine learning
models in order to imitate mutation. This allows us to automati-
cally create content generators by only specifying the fitness of the
content, which is relatively domain-agnostic. The end result is an
iterative content generator that is fast and does not need a fitness
function during inference. Model building consists of two main
loops (as shown in Figure 1): the evolution loop and training loop.
The evolution loop is a normal evolutionary algorithm that gener-
ates content, while the training loop is responsible for extracting a

training dataset from the top X chromosomes. The training dataset
is constructed by converting the evolution history into state-action
pairs, on which a traditional supervised learning model is trained.
We propose two methods for the framework: the “Normal” method
(the machine learning model is trained after the evolution ends)
and the “Assisted” method (the machine learning model is trained
every I generations and used to assist evolution). The results show
that although the “Assisted” method does not help the evolution to
be faster or more efficient, it does stabilize the trained networks,
which learn better policies to imitate evolution in comparison to
“Normal” method. Both methods can infer on randomly initialized
maps and repair them without use of an evaluation function.

REFERENCES

(1]

=

[10]

(1]

[12]

[13]

[14

[15]

[16

[17

[18]

[19

[20]

[21]

Kamal Abboud and Marc Schoenauer. 2001. Surrogate deterministic mutation:
Preliminary results. In International Conference on Artificial Evolution. Springer,
104-116.

Daniel Ashlock. 2010. Automatic generation of game elements via evolution. In
Conference on Computational Intelligence and Games. IEEE, 289-296.

Daniel Ashlock, Colin Lee, and Cameron McGuinness. 2011. Search-based proce-
dural generation of maze-like levels. Transactions on Computational Intelligence
and Al in Games 3, 3 (2011), 260-273.

Hans-Georg Beyer and Hans-Paul Schwefel. 2002. Evolution strategies—a com-
prehensive introduction. Natural computing 1, 1 (2002), 3-52.

Debosmita Bhaumik, Ahmed Khalifa, Michael Green, and Julian Togelius. 2020.
Tree search versus optimization approaches for map generation. In Artificial
Intelligence and Interactive Digital Entertainment, Vol. 16. AAAI, 24-30.

Paul E. Black. 2021. Ratcliff/Obershelp pattern recognition. https://www.nist.gov/
dads/HTML/ratcliffObershelp.html

Cameron Browne and Frederic Maire. 2010. Evolutionary game design. Transac-
tions on Computational Intelligence and Al in Games 2, 1 (2010), 1-16.
Zhengxing Chen, Christopher Amato, Truong-Huy D Nguyen, Seth Cooper,
Yizhou Sun, and Magy Seif El-Nasr. 2018. Q-deckrec: A fast deck recommendation
system for collectible card games. In Computational Intelligence and Games. IEEE,
1-8.

Michael Cook, Simon Colton, Azalea Raad, and Jeremy Gow. 2013. Mechanic
miner: Reflection-driven game mechanic discovery and level design. In European
Conference on the Applications of Evolutionary Computation. Springer, 284-293.
Steve Dahlskog, Julian Togelius, and Mark] Nelson. 2014. Linear levels through
n-grams. In International Academic MindTrek Conference: Media Business, Man-
agement, Content & Services. ACM, 200-206.

Omar Delarosa, Hang Dong, Mindy Ruan, Ahmed Khalifa, and Julian Togelius.
2021. Mixed-initiative level design with rl brush. In Conference on Computational
Intelligence in Music, Sound, Art and Design. Springer, 412-426.

Sam Earle, Maria Edwards, Ahmed Khalifa, Philip Bontrager, and Julian Togelius.
2021. Learning controllable content generators. In Conference on Games. IEEE,
1-9.

Sam Earle, Justin Snider, Matthew C Fontaine, Stefanos Nikolaidis, and Julian
Togelius. 2022. Illuminating diverse neural cellular automata for level generation.
In Genetic and Evolutionary Computation Conference. ACM, 68-76.

Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O Stanley, and Jeff Clune.
2019. Go-explore: a new approach for hard-exploration problems. arXiv preprint
arXiv:1901.10995 (2019).

Jason Grinblat. 2016. Markov by candlelight. https://www.youtube.com/watch?
v=3AjlsTtrf VY

Matthew Guzdial, Nicholas Liao, Jonathan Chen, Shao-Yu Chen, Shukan Shah,
Vishwa Shah, Joshua Reno, Gillian Smith, and Mark O Riedl. 2019. Friend,
collaborator, student, manager: How design of an ai-driven game level editor
affects creators. In CHI conference on human factors in computing systems. ACM,
1-13.

Matthew Guzdial, Nicholas Liao, and Mark Riedl. 2018. Co-creative level design
via machine learning. In AIIDE workshop on Experimental Al in Games. AAAL
Rishabh Jain, Aaron Isaksen, Christoffer Holmgard, and Julian Togelius. 2016.
Autoencoders for level generation, repair, and recognition. In ICCC workshop on
computational creativity and games, Vol. 9. IEEE.

Yaochu Jin. 2011. Surrogate-assisted evolutionary computation: Recent advances
and future challenges. Swarm and Evolutionary Computation 1, 2 (2011), 61-70.
Isaac Karth and Adam M Smith. 2017. WaveFunctionCollapse is constraint solving
in the wild. In Foundations of Digital Games. ACM, 1-10.

Manuel Kerssemakers, Jeppe Tuxen, Julian Togelius, and Georgios N Yannakakis.
2012. A procedural procedural level generator generator. In Computational
Intelligence and Games. IEEE, 335-341.

[22

[23]

[24

[25]

IS
S

[27

[28

&
=

&
2

[37

[38

(39]

[41

[42

[43

[44

[45

[46]

Ahmed Khalifa, Philip Bontrager, Sam Earle, and Julian Togelius. 2020. Pcgrl:
Procedural content generation via reinforcement learning. In Artificial Intelligence
and Interactive Digital Entertainment, Vol. 16. AAAI 95-101.

Ahmed Khalifa and Magda Fayek. 2015. Automatic puzzle level generation: A gen-
eral approach using a description language. In ICCC workshop on computational
creativity and games. IEEE.

Ahmed Khalifa, Michael Cerny Green, Diego Perez-Liebana, and Julian Togelius.
2017. General video game rule generation. In Computational Intelligence and
Games. IEEE, 170-177.

Ahmed Khalifa and Julian Togelius. 2020. Multi-Objective level generator gener-
ation with Marahel. In Foundations of Digital Games. ACM, 1-8.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. 2020. Offline rein-
forcement learning: Tutorial, review, and perspectives on open problems. arXiv
preprint arXiv:2005.01643 (2020).

Jialin Liu, Sam Snodgrass, Ahmed Khalifa, Sebastian Risi, Georgios N Yannakakis,
and Julian Togelius. 2021. Deep learning for procedural content generation.
Neural Computing and Applications 33, 1 (2021), 19-37.

Athar Mahmoudi-Nejad, Matthew Guzdial, and Pierre Boulanger. 2021. Arachno-
phobia exposure therapy using experience-driven procedural content generation
via reinforcement learning (EDPCGRL). In Artificial Intelligence and Interactive
Digital Entertainment, Vol. 17. AAAI 164-171.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. 2013. Playing atari with deep
reinforcement learning. arXiv preprint arXiv:1312.5602 (2013).

Jean-Baptiste Mouret and Jeff Clune. 2015. Illuminating search spaces by mapping
elites. arXiv preprint arXiv:1504.04909 (2015).

SangGyu Nam and Kokolo Ikeda. 2019. Generation of diverse stages in turn-based
role-playing game using reinforcement learning. In Conference on Games. IEEE,
1-8.

Yew S Ong, Prasanth B Nair, and Andrew J Keane. 2003. Evolutionary optimization
of computationally expensive problems via surrogate modeling. AIAA journal
41, 4 (2003), 687-696.

Diego Perez-Liebana, Jialin Liu, Ahmed Khalifa, Raluca D Gaina, Julian Togelius,
and Simon M Lucas. 2019. General video game ai: A multitrack framework for
evaluating agents, games, and content generation algorithms. Transactions on
Games 11, 3 (2019), 195-214.

Anurag Sarkar and Seth Cooper. 2021. Dungeon and Platformer Level Blending
and Generation using Conditional VAEs. In Conference on Games. IEEE, 1-8.
Noor Shaker, Mohammad Shaker, and Julian Togelius. 2013. Evolving playable
content for cut the rope through a simulation-based approach. In Artificial Intel-
ligence and Interactive Digital Entertainment Conference. AAAL

Tianye Shu, Jialin Liu, and Georgios N Yannakakis. 2021. Experience-driven PCG
via reinforcement learning: A Super Mario Bros study. In Conference on Games.
IEEE, 1-9.

Matthew Siper, Ahmed Khalifa, and Julian Togelius. 2022. Path of Destruction:
Learning an Iterative Level Generator Using a Small Dataset. arXiv preprint
arXiv:2202.10184 (2022).

Sam Snodgrass and Santiago Ontanén. 2016. Learning to generate video game
maps using markov models. Transactions on computational intelligence and Al in
games 9, 4 (2016), 410-422.

Adam Summerville, Matthew Guzdial, Michael Mateas, and Mark O Riedl. 2016.
Learning player tailored content from observation: Platformer level generation
from video traces using Istms. In Artificial intelligence and interactive digital
entertainment conference. AAAIL

Adam Summerville, Sam Snodgrass, Matthew Guzdial, Christoffer Holmgard,
Amy K Hoover, Aaron Isaksen, Andy Nealen, and Julian Togelius. 2018. Proce-
dural content generation via machine learning (PCGML). Transactions on Games
10, 3 (2018), 257-270.

Julian Togelius, Georgios N Yannakakis, Kenneth O Stanley, and Cameron Browne.
2011. Search-based procedural content generation: A taxonomy and survey.
Transactions on Computational Intelligence and Al in Games 3, 3 (2011), 172-186.
Ruben Rodriguez Torrado, Ahmed Khalifa, Michael Cerny Green, Niels Justesen,
Sebastian Risi, and Julian Togelius. 2020. Bootstrapping conditional gans for
video game level generation. In Conference on Games. IEEE, 41-48.

Vanessa Volz, Jacob Schrum, Jialin Liu, Simon M Lucas, Adam Smith, and Sebas-
tian Risi. 2018. Evolving mario levels in the latent space of a deep convolutional
generative adversarial network. In Genetic and evolutionary computation confer-
ence. ACM, 221-228.

Mariana Werneck and Esteban WG Clua. 2020. Generating procedural dungeons
using machine learning methods. In Brazilian Symposium on Computer Games
and Digital Entertainment. IEEE, 90-96.

Chang Ye, Ahmed Khalifa, Philip Bontrager, and Julian Togelius. 2020. Rotation,
translation, and cropping for zero-shot generalization. In Conference on Games.
IEEE, 57-64.

Yahia Zakaria, Magda Fayek, and Mayada Hadhoud. 2022. Procedural Level
Generation for Sokoban via Deep Learning: An Experimental Study. Transactions
on Games (2022).

https://www.nist.gov/dads/HTML/ratcliffObershelp.html
https://www.nist.gov/dads/HTML/ratcliffObershelp.html
https://www.youtube.com/watch?v=3AjlsTtrfVY
https://www.youtube.com/watch?v=3AjlsTtrfVY

	Abstract
	1 Introduction
	2 Background
	2.1 Search-based PCG
	2.2 PCGML
	2.3 PCGRL
	2.4 Surrogate Modeling

	3 Mutation Models Framework
	3.1 Evolution Loop
	3.2 Training Loop

	4 Experiments
	4.1 Domain
	4.2 Evolution Loop
	4.3 Training Loop
	4.4 Model Inference

	5 Results
	5.1 Evolution Results
	5.2 Model Inference Results

	6 Discussion
	7 Conclusion
	References

